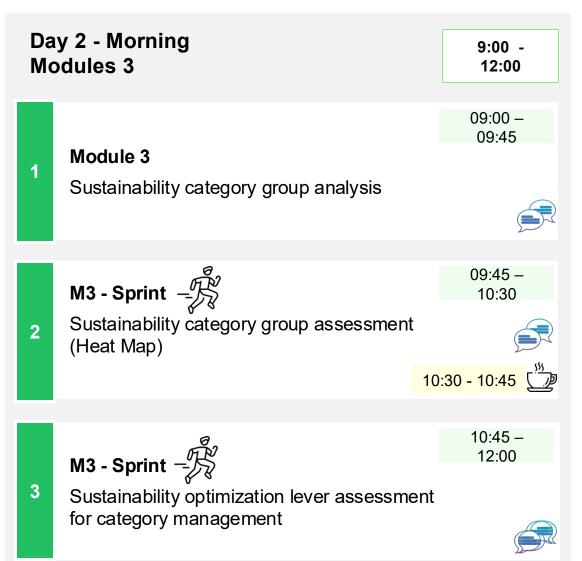
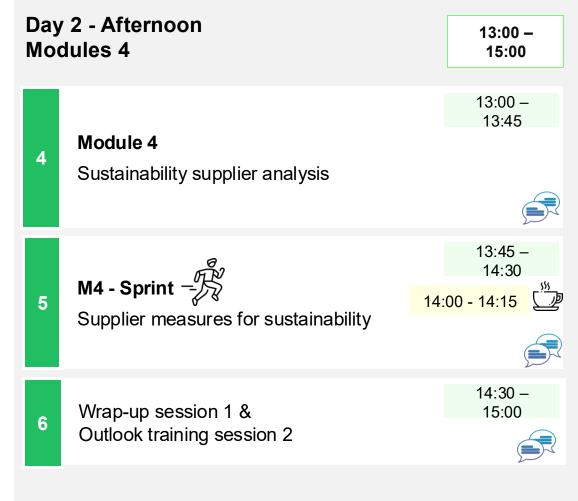


Fit for Sustainable Supply Chain in Europe

A holistic and practical approach to how purchasing can systematically integrate sustainability into its strategies and practices.

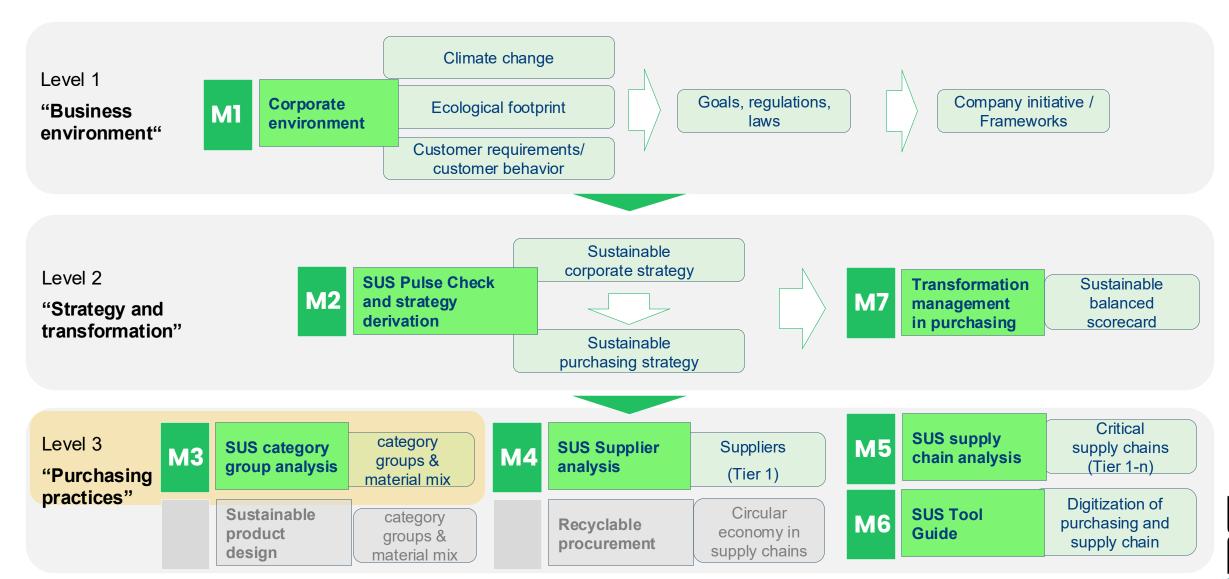
IPG Masterclass


Sustainable Procurement


M3 – Sustainability Category Group Analysis

IPG PARTNERS GROUP

Fit for Sustainable Supply Chain in Europe



Questions & comments

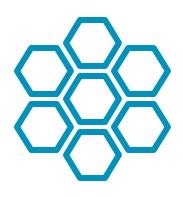
Each focus area must be evaluated, the fundamentals determined, and priorities set.

SUS category group analysis

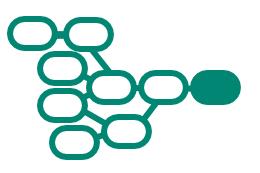
What we purchase

SUS Supplier analysis

Who we buy from


SUS supply chain analysis

What do the supply chains look like?


CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

We use product group management to develop and implement sustainable product group strategies.

Product group management

Development/updating and implementation of product group strategies with a focus on sustainability

Supplier management

Segmentation, classification, and intervention of suppliers with a focus on sustainability

Supply chain management

Full transparency across the supply chain, identification and management of risks with a focus on sustainability

What we buy

Who we buy from

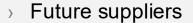
What do the supply chains look like

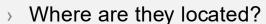
Product group management as a strategic starting point for sustainability in purchasing significantly determines the focus of supplier and supply chain management.

The assessment of the initial situation for each category group, including a "hot spot" analysis, forms the starting point

What we purchase

- > Products
- > Services
- Materials used
- > Processes involved
- Where do these materials come from?
- Emissions generated throughout the entire life cycle
- Who provides the service?
- > How sustainable is it?




hot spots?

Who we buy from

Hot spots?

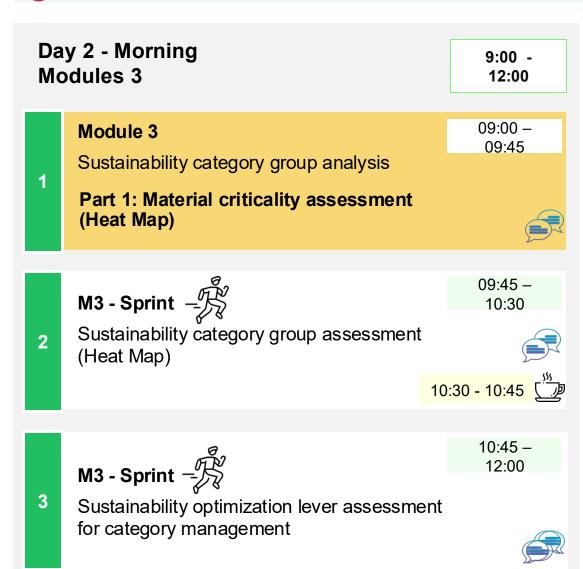
- What happens there?
- > Emissions generated?
- How do they treat their employees?
- How sustainable are they?

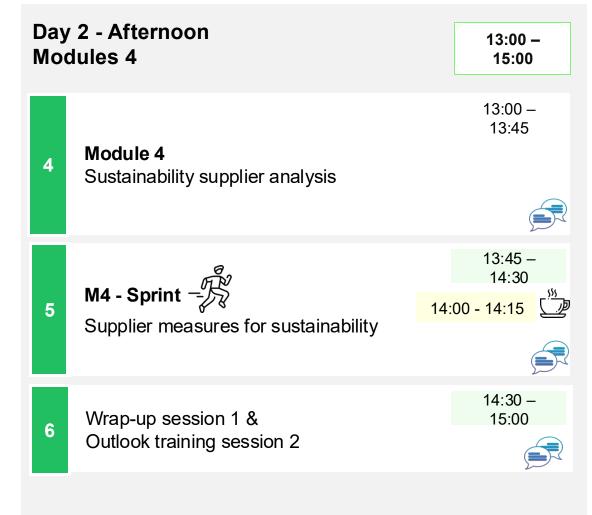
What do the supply chains look like

- What happens in the supply chain?
- Hot spots?
- Geographies involved
- Suppliers involved ("upstream suppliers")
- How is logistics organized?
- Variability and how easily can the structures be changed?
- Emissions generated?
- How are people treated?

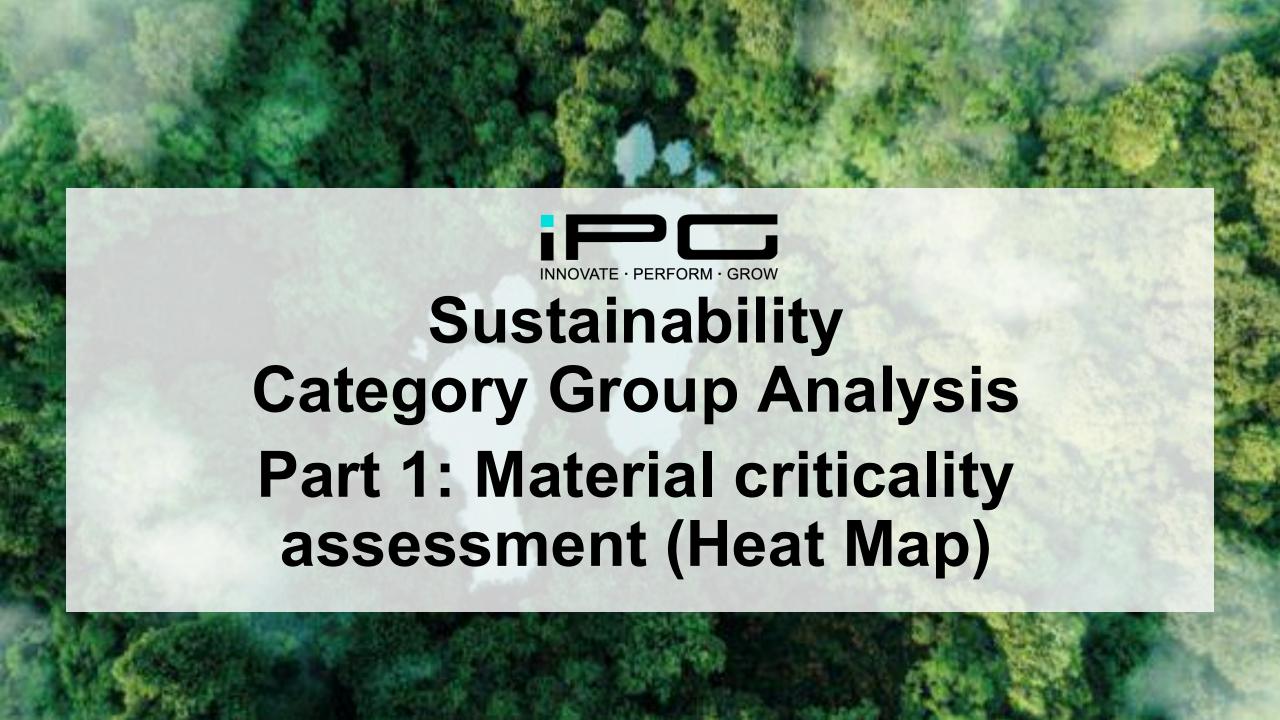
One of the most difficult

Fit for Sustainable Supply Chain in Europe





Fit for Sustainable Supply Chain in Europe



Questions & comments

Sustainability in the procurement process – Overview

In order to make the procurement function sustainable, it is first necessary to lay the **organizational groundwork**, set strategic **guidelines**, and then integrate sustainability aspects into key **processes**.

Sustainability aspects are also anchored in many strategic, tactical, and operational procurement processes.

Embedding sustainability at the strategic level drives sustainability goals forward at all process levels

In order to make the procurement function sustainable, it is first necessary to set the **organizational course**, establish strategic guidelines, and then integrate sustainability aspects into key processes.

Sustainability must be anchored in strategic, tactical, and operational procurement processes

Strategic processes

- Integration of sustainability criteria into selected product group strategies
- Optimization of demand planning to avoid unnecessary quantities
- Identification of sustainable products/materials through procurement market analyses
- Evaluation of ownership models (make or buy)

Operational processes

- Consideration of sustainability aspects in requirements
- Placing orders with suppliers who have good sustainability performance ratings
- Offering **supply chain finance** programs with better terms for sustainable suppliers

Tactical processes

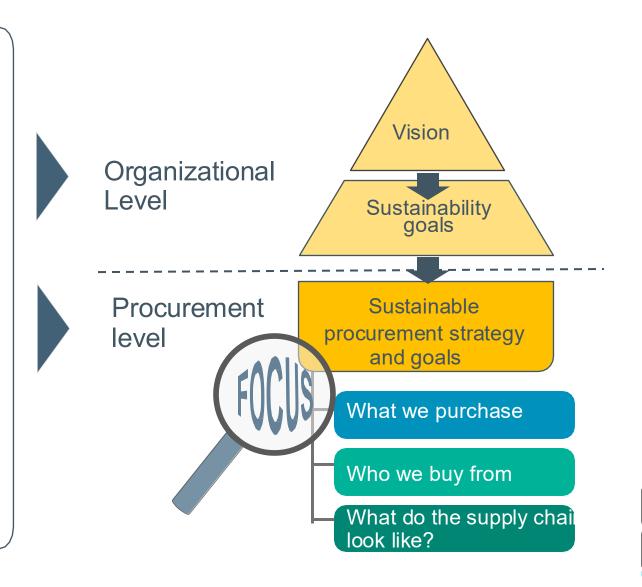
- Simplification of **specifications** and consideration of sustainability criteria
- · Consideration of sustainability aspects in award **decisions** (tenders)
- Calculation of life cycle costs (LCC)
- Integration of sustainability aspects into supplier contracts

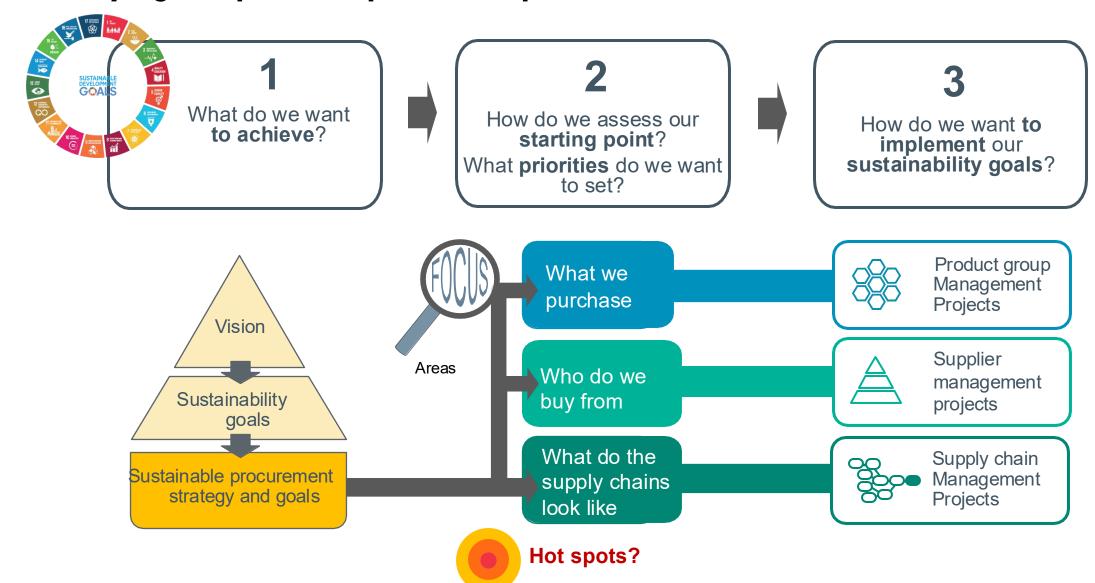
Performance & amp; CIP

- Definition, collection, and reporting of sustainabilityrelated **performance indicators**
- Creation and adoption of guidelines and codes of **conduct** for sustainable procurement
- Training of purchasers, stakeholders, and suppliers on sustainability issues

þ

The maturity level and intended benefits of product group management determine which goals purchasing focuses on and how well or how easily sustainability goals can be integrated.


goals.


What do we want to achieve?

Sustainable Development Goals (SDG)

- Compliance with regulations
- Reduce risk
- Satisfy stakeholders
- Achieve goals, e.g., SDGs
- Gain new competitive advantages

The assessment of the initial situation for each category group, including a "hot spot" analysis, forms the starting point

What we purchase

- > Products
- Services
- Materials used
- > Processes involved
- Where do these materials come from?
- Emissions generated throughout the entire life cycle
- Who provides the service?
- How sustainable is it?

hot spots?

Vho we buy from

- > Current suppliers
- Future suppliers
- Where are they located?
- What happens there?
- > Emissions generated?
- How do they treat their employees?
- How sustainable are they?

Accessible

- What happens in the supply chain?
 - Geographies involved

 Hot spots?
- Suppliers involved ("upstream suppliers")
- How is logistics organized?
- Variability and how easily can the structures be changed?
- Emissions generated?
- How are people treated?

One of the most difficult

A consistent perspective that covers the entire life cycle is considered a key success factor (1/2)

LCA Our organization Customer Design Supply side Outbound Consumption Supply chains an inbound logistics logistics and downstream Consumption or original or use and/or Acquisition Design End of life sources processing by use chain Copper base ...in relation to Plastic handle Use of resources Not very sustainable Relatively **Emissions** sustainable Sustainable Non-Waste sustainable Pollution Processes involved Stainless steel People (forced labor, child labor, working body conditions, etc.) Question: How sustainable is each WS Social issues and communities we affect stage or each procurement object per WS Data

product or service)?

stage... (material, component, part, module,

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

^{*} Life Cycle Assessment (LCA)

A consistent perspective that covers the entire life cycle is considered a key success factor (2/2).

Cradle-to-gate (C2G)

"From cradle to factory gate":

A cradle-to-gate analysis takes into account the environmental impact of the production of the building material. This begins with the extraction of the raw materials and **ends with the delivery of the finished products to** the manufacturer's factory **gate**.

Cradle-to-cradle (C2C)

"From cradle to cradle": meaning
"from origin to origin"; an
approach to a consistent and
comprehensive circular
economy

^{*} Life Cycle Assessment (LCA)

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

^{*} Life Cycle Assessment (LCA)

Example Prioritize CG Summarize SUS Perform risk Procedural steps Determine risk Derive measures risks, especially risks and measures category for the CG analysis of the CG for own WG in within the WG in terms of impact for committee Strategy (heat map) in the CFT **CFT** influence approval Risk tool Risk assessment Risk assessment Measures slide Existing **Summary** WG assessment diagram (slide 3) documents (slide 1) (Slide 4) (xls file) (slide 2)

Time

When introducing a new WG

Note: Support from SUS representative

In the analysis phase

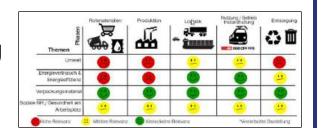
In the analysis phase

CFT = Cross-functional team

In the strategy phase

Pre-approval phase

Note: Including specifications for sourcing


Step 1 – Determine risk category for the category group (HeatMap). category group. "

complaints

Heat map/category group risk classification (prioritization)

Heat map

→ Risk analysis of critical category groups using a "heat map" (initiated, to create a basis for focusing.

Evaluation of SUS opportunities and risks in all category group strategies initiated.

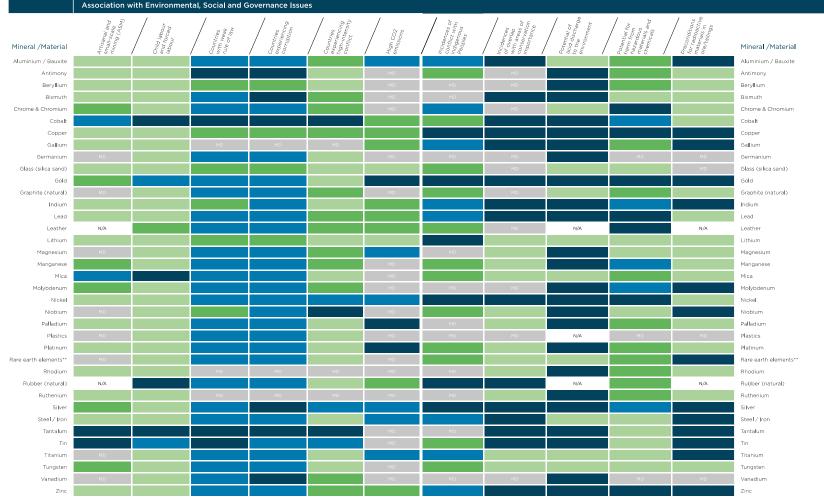
Vareng	Farengruppenanalyse - Nachhaltigkeit		University Secretary																	
50M-58,	20.02.2020		Gurch NH-	_					au Analysic		Manahra	nef(1)r	40%	120,5	121					-
			Verantmortliche na	divid: NH-Variation divisi		hlen 2019			BlurUnice		granianing	mittel (2)	30%	90.6	101.			Caus Analysis:		-
			rainm	AL PSECURIT	15.0	50-Report		- 2	2017			hoch (S):	10%	90.6	90	Durch Ven	entwortliche/n der WG auszufüllen	Sharwhar 2017		12
		Divi	Nachtuitigketts-	Verantwortlicher Category			Black Compton Class	Name STATE	Littraveli-		Rang mach	Rang rach	EReng Urmentication	Unweit	Urraud Prioritional	Auttresia		Referencies	Arbeitununder I	Elektronomien
C COLD	Beseithnung WG	610	beauftragte/r der Division	Mgt / Leadbuyer für die WG	Webson	Spend 2019 In CHF	Statistics .	Non Spend	pro CHF	oro WS in O IF	Limwett-	liceten oro CHF	+ Umweltkosten	Rang (second)	Masshaker	ng.	Beergaguag bei "vere"	Artestomerates		Annual State of the last of
	Total SBB	00	Ureout.		13534	5.265,681,549	A.128.724.434		0,0528	277,806,286	302	1/12	302	303	362	Photo C	mgonougon mm	0,29	73.162.106	21.A31.632
010101	Personen- Traducine (Generalsystems)				73	556,235,625	817,000,750	1.985	0.0850	45.848.088	1	42	43	20	0 :	ja .	-	0.37	11,852,461	6.012.466
010201	Directors-Loks				14	5.513.412	2.009.013	1,090	0,0930	457.807	76	GE	146	48	0.1	je		0,37	119,668	01,000
010202	Rongertoks				8	186,630	24.545.009	0000	0,0636	15,649	259	48	307	158	0.1	je:		0.37	4.185	1.533
010301	Reisezugwagen				- 8	1.312.840	EEDHLETT	0.034	0,0756	99.267	172	76	250	117	0.1	je		0,38	28,404	9,441
010401	Güterwagen	G.			23	4.083.891	291333	33,238	0.0880	373.856	99	53	152		0 1	je.		0,37	97.279	36.143
	Specialishripouge (Infrastruktur)				83	87.731.871	15,399,034	6.630	0,0020	610.989	54	237	291	149	0.2	ja .		0,20	697.868	139,446
	Rebernittel & Arbeitsbühnen				56	4.909.120	2,100,010		0,0500	229.941	129	138	267	133	0.2	31		0,92	73.088	22.537
	Reinigungsunlagen				22	608.352	391,476		0,0356	34.230	247	197	444	238	0 1	30		0.32	5.352	2,072
	Beacheltengsarlagen				19	1.912.831	176.132		0,0436	90,623	181	145	326	167	0 2	34		0,34	33.257	313.988
	Oberflichenbescheitungsanlagen	P			15	147.134	285 812		0,0536	7,990	275	131	406		0 1	36		0,00	180	345
	Entsorgungs & Aufbereitungsanlagen				17	506.491	120,140		0,0363	19.348	252	209	460	2/17	0 1	Pr		0,30	3.625	2,565
	Prüferlägker	9			45	1.542.235	600.344		0,6836	57,973	204	209	413	217	0 1	ju .		0,32	22.325	7.222
	Kran- & Sicherungsanlagen				21	1.390.452	109.630		0,0507	70.432	194	137	301	171	學文	34		0,31	23,049	7,139
	Dansportoystems				14	842.279	714,050		0,0507	42,665	218	135	353		0 1	90		0,38	13.962	4.334
	Vanichtungen & Hilfsmittell				225	2.903.446			0,0500	147,072	150	136	286	146	0.1	ja .		0,31	48.129	14.907
	Billet Automaten				7	3,000,236	16.106.635		0,040%	121.512	165	193	358		0.1	39		0,31	52.996	16.100
	Billet Automaten Wartung	- 5			8	4.209.418	1,240,640		0,0067	28.232	239	139	478		0	ja		0,18	192.096	23.571
	Billet Automaten Crastateile				16	864,384	1.102,634		0,0404	34,919	229	195	424	227	0 1	.34		0,31	14,744	4,581
	Ceingeate	- 7			34	445.470	98.60		0,0554	24,739	246	125	371	301	0 1	14		0,85	3.258	2,895
	Anlagen/Einrichtungen Kundemervice	- 5			22	1.154.998	949,000	2.730	0,0954	53:547	158	124	322	166	NP 2	34		9,35	21.345	7,488
	Fandarten auf Karten	- 5			13	5.529.994			Reine MV-Dates			12.0	35.77	- 22		17/25		10.56		100000
050307	Engineering für Flottentechnik				57	11,708,344	2,475.473	4.727	0,0000	70,748	193	249	442	237	0:	39		0.18	103.514	20,317
					- 12	2 122 140	3,265,975	0.031	0.0066	13,959	262	- 22	503	273	-	-		0.19	11967	2.160
	Sutar Meri + Messurgeri	- 1			24	750,710			0,0043	2,100	286	241 197				- 34			11.562 6.183	
	Software Angesoungen Technische Anlagen FU	- 15			50				0.0065		255	145	583 500	299	0	, P		0,18	25.387	3.112
	Roinigungers	- 1				2.800.243	2,894,117			17.348				272		34			406.758	4.648
	Fechs Service, Wartung, Unterfult Maschinen				528	19.343.904			0,0067		160	240	400	212	@ 1	34		0,18		100.316
	Veredelungen				69	2.090.416	4.245301	15.694	0.0679	1.03.030	153	94	207	116				0,35	34,500	11.112

Example: "Material Heat Map"

1. Analyze risks 2. Develop a WG strategy

3. Implement measures

4. Measure & report


5.
Manage complaints

- The color coding of materials based on individual criteria enables a heat map and awareness of the importance of materials for the industry, as well as quick identification of problem areas, either by topic or by material.
- Where sufficiently detailed information is available, materials have been rated on a four-point scale from "weak" to "very strong" in terms of their connection to ESG issues.

The "hot spots" in this heat map indicate potential problems in the production of a material, but are not a definitive measure of risk or impact.

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

Example: "Material Heat Map"

Mercedes-Benz

Missing Data

No / Weak

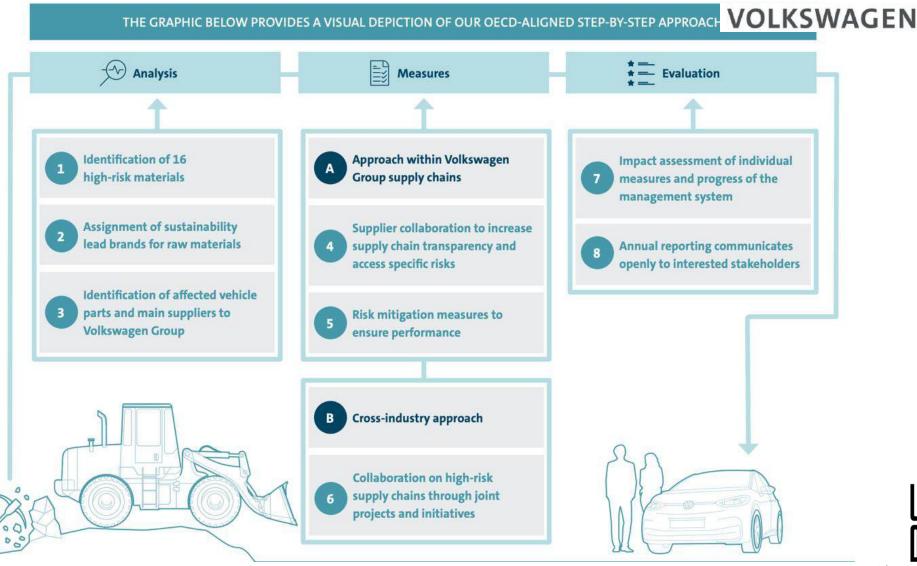
Moderate

Strong

Yes / Very Strong

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

Good Practice Beispiel


VOLKSWAGEN

Good Practice Beispiel Supply Chain Analysis for critical raw materials

Volkswagen – Development of sustainable WG strategy – Risk and Audit Approach

- In 2020 and 2021, Volkswagen Group implemented different approaches for the identification of risks in different raw material supply chains
- Risk assessment and selection of initial risk mitigation efforts did begin in 2020;
- however, the majority of this work was carried out in 2021 and is currently ongoing and continuously evolving

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

Volkswagen – Responsible Raw Material Report 2021

Materialien und ihre Hauptrisiken:

VOLKSWAGEN

Lithium	OLF OCC	ss to workers' upational health safety	Advers enviror impact	nmental						
Kobalt	Child Labor	Modern Slavery	Systematic of widespread human right abuses	or Human rig	l by public a security p	port to non-state rmed groups or ublic or private security forces	Risks to workers' occupational health and safety	Adverse environmental impacts	Infringer on labor	71 700
Nickel	Child Labor	Modern Slavery	Systematic or widespread human rights abuses	Human rights abuses committed by public or private security forces	Support to non-state armed groups or public or private security forces	Risks to workers' occupational health and safety	Adverse environmental impacts	Infringement on labor rights	Discrimination and harassment	Threats to indigenous people and communities
Graphit	Human rights ab committed by pu or private security	iblic	Risks to workers' occupational health and safety	Adv	orerse mental acets	Infringement on labor rights		Threats to ndigenous people and communities		
Zinn, Titan, Wolfram, Gold, konfliktbehaftete Mineralien	Child Labor	Modern Slavery	Systematic or widespread human rights abuses	Human rights abuses committed by public or private security forces	Support to non-star armed groups or public or private security forces	Risks to workers' occupational healt and safety	Adverse environmental impacts	Infringement on labor rights	Discrimination and harassment	Threats to indigenous people and communities

INNOVATE - PERFC

2/

Quelle: IPG Research

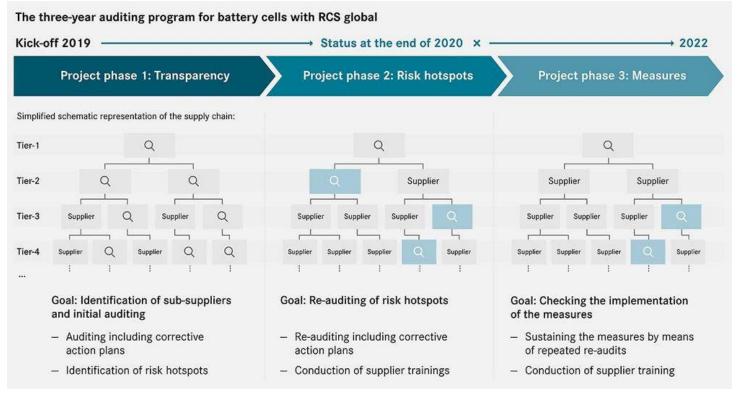
Volkswagen – Responsible Raw Material Report 2021

Materialien und ihre Hauptrisiken:

VOLKSWAGEN

Aluminium	Child labor Child slavery Systematic or widespread human rights abuses Adverse environmental impacts Threats to indigenous people and communities
Kupfer	Adverse environmental impacts Threats to indigenous people and communities
Naturkautschuk	Adverse environmental impacts Risks to workers' occupational health and safety Child labor Child labor Child labor Threats to indigenous people and communities Child labor Infringement on labor rights
Seltene Elemente	Child Modern Slavery Widespread human rights abuses committed by public or private security forces Support to non-state armed groups or public or private security forces Support to non-state armed groups or public or private security forces Risks to workers' Adverse environmental impacts Infringement on labor rights and harassment
Stahl	Adverse Risks to workers' Infringement Discrimination and Environmental occupational health on labor harassment, including indigenous people impacts and safety rights against subgraphs groups and communities

Good Practice Beispiel


Good Practice Beispiel Supply Chain Analysis for critical raw materials

Mercedes Supply Chain Analysis for critical raw materials – Example Baterry cells

- The supply chains of battery cell suppliers to Mercedes-Benz are assessed at all tiers, from battery cell supplier to mine site, by RCS Global.
- This assessment includes aspects such as the prevention of child labour and forced labour, health and safety at work, material control and due diligence systems. Where necessary individual corrective action plans are agreed with the suppliers and their implementation is continuously monitored.
- The aim of this corrective action and regular monitoring is to ensure that a continuous improvement process takes place in the supply chain. This ultimate aim is that the cobalt for battery cells comes from responsible sources of supply that meet the requirements of Mercedes-Benz AG.

Mercedes-Benz

The program's aims are as follows:

- > Creating transparency and auditing of the company's cobalt supply chain at every tier from the battery cell supplier down to mine level
- Auditing the due diligence management systems and procurement practices of suppliers in the cobalt supply chain
- Initiate a process of continuous improvement by monitoring the implementation of corrective action plans and providing audite e trainings.

Heat map WG risk classification

- In August 2020, the sustainability risk analysis and its measures were approved by the SCM Board.
- 115 category groups were classified as red, i.e., high environmental and social risk. This classification will serve as the basis for all further measures in sustainable procurement in the coming years.

Example

Preparation of external analysis

Prioritization:

- Environmental risk
- Social risk
- Purchasing volume
- External costs / risk working hours

Assessment by the sustainable procurement working group

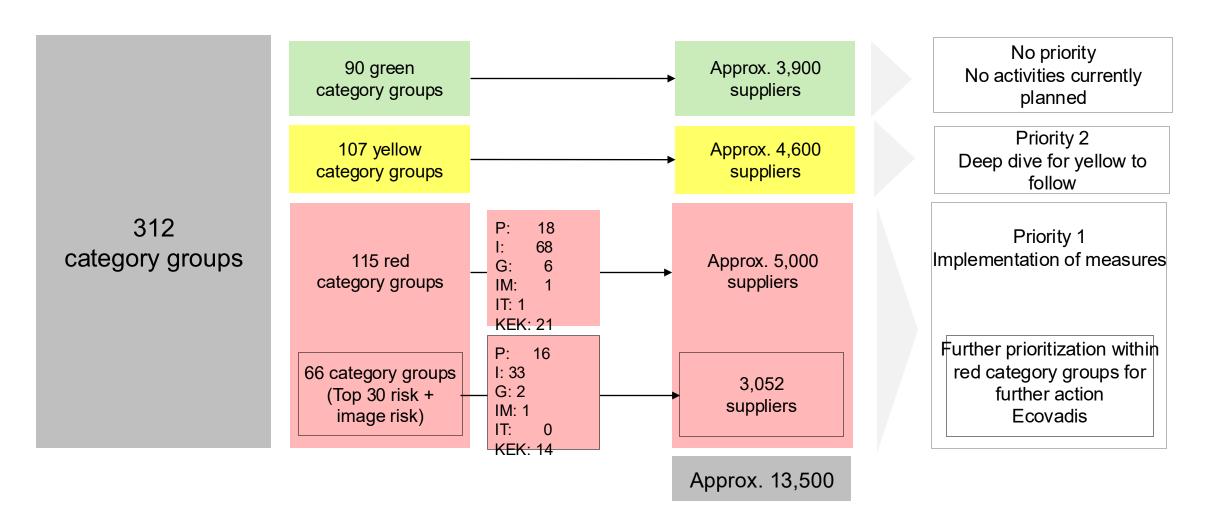
Procedure:

- Environmental risk
- Social risk
- Purchasing volume
- External costs / risk working hours

Comparison of heat map by divisions – category managers

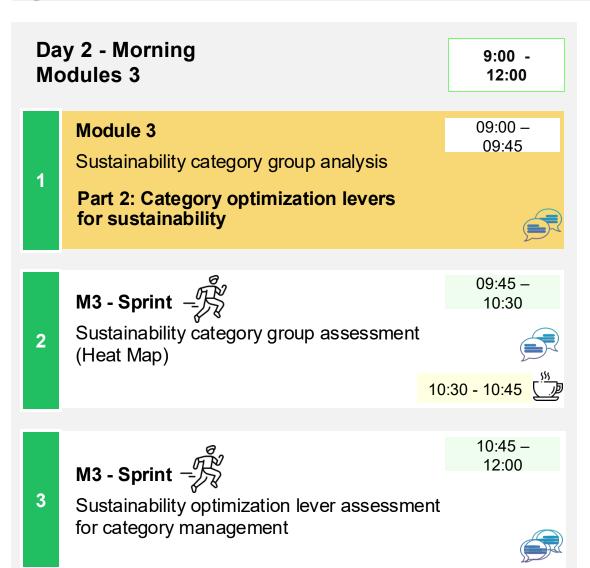
Current status Heat map

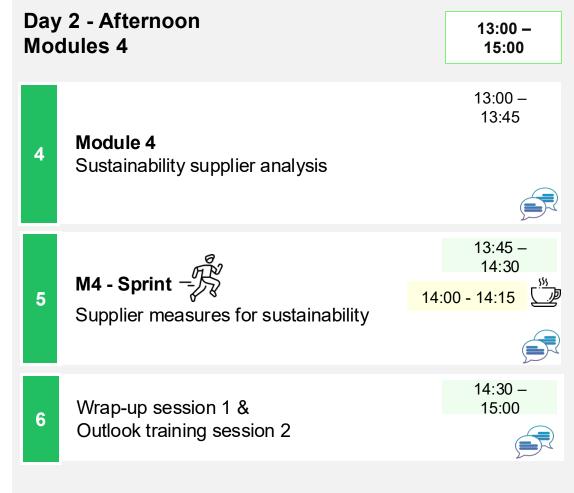
Number of working groups:


Yellow: 107

Green: 90

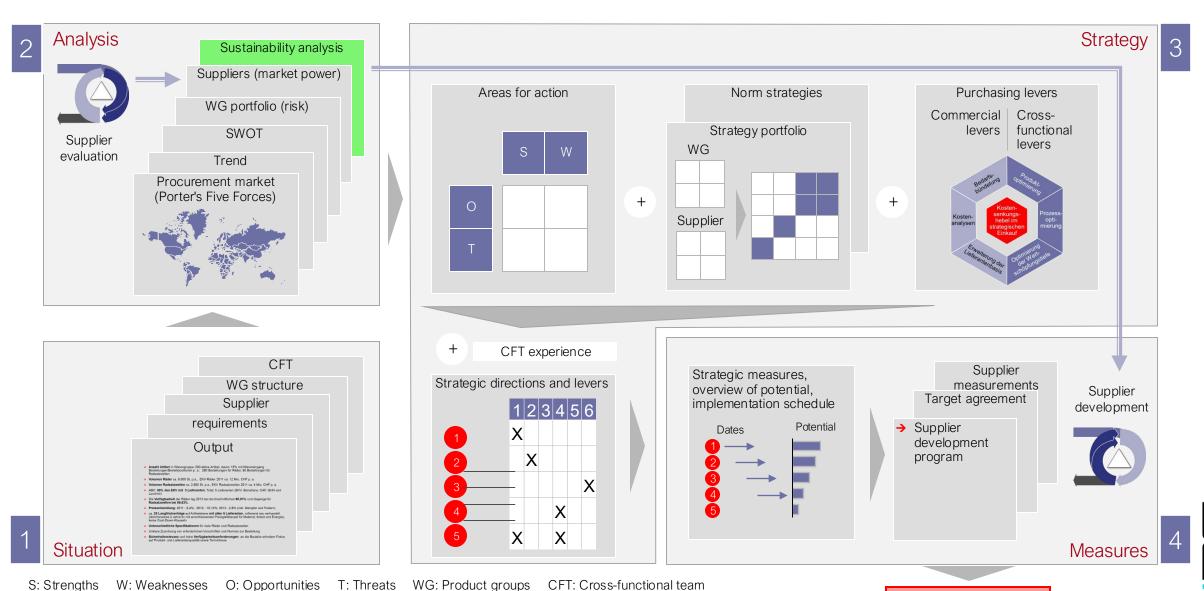
CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS


Classification of category groups into three risk levels and prioritization. (Note: Suppliers who deliver to multiple category groups have been assigned to the category group with the highest priority.)


Example

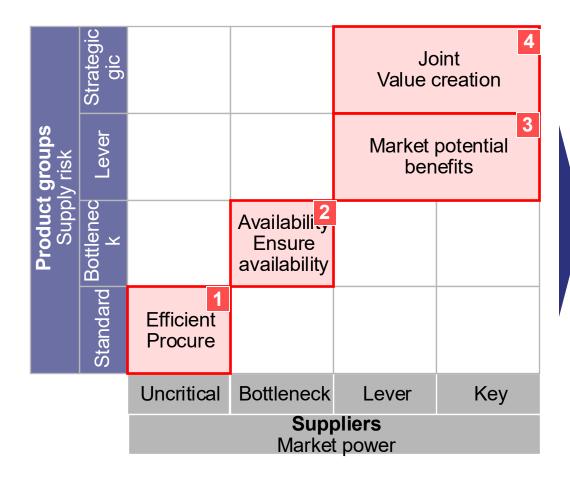
Fit for Sustainable Supply Chain in Europe

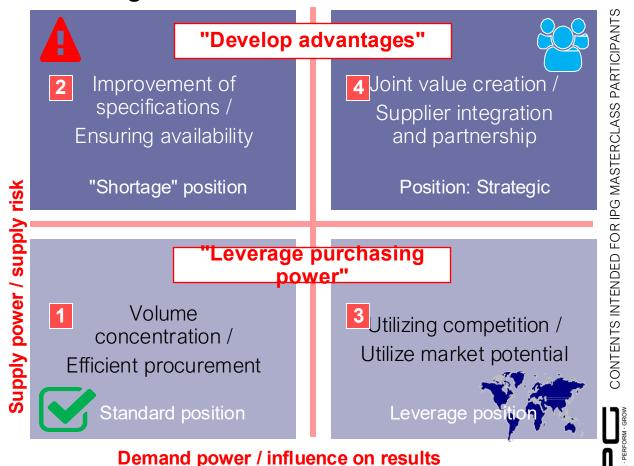
Questions & comments



Sustainability Category Group Analysis

Part 2: Category optimization levers for sustainability


Roadmap for strategy development and implementation

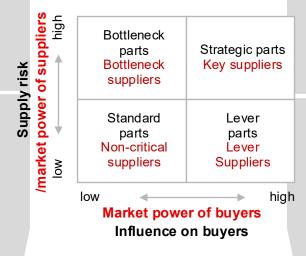

Source: IPG

Purchasing leverage matrix with best-fit approaches

Positioning Standard strategy

Best-fit strategic directions and purchasing leverage

Purchasing leverage matrix with best-fit approaches


Improvement of specifications / Ensure availability

Position "Bottleneck"

Volume
concentration /
Efficient procurement

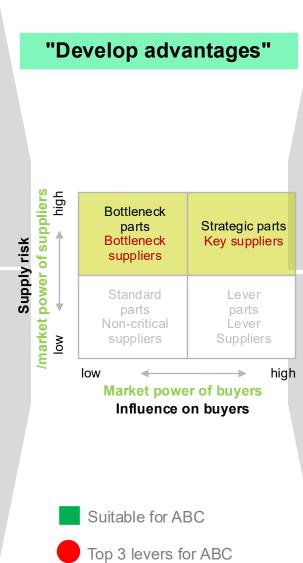
Standard position

"Develop advantages"

"Leveraging purchasing power"

Joint
value creation /
Supplier integration
and partnership

Position "Strategic"


3 Exploitation of competition / Exploiting market potential

Leverage position

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

20 Category optimization levers for sustainability

Improvement of specifications S1 Changing specifications to promote sustainability S2 Changing product design (e.g. through modularity, reparability, lightweight construction) for greater sustainability S3 Innovations: Actively pursuing sustainability innovations among our suppliers S4 **Demand management**: Reduction of demand ("reduce") in product groups with high criticality/high sustainability risks -> Reduction of total material quantity in the cycle through less use S5 Reducing resource use: The proportion of primary raw materials will be reduced through the use of recycled and renewable materials ("Reduce") S6 Extending service life: Extending the service life of materials, components, and products through maintenance and repair as well as overhaul and reconditioning ("Reuse") S7 Intensify use: Get more output from the same amount of materials through reuse, redistribution, and sale of materials, components, and products ("Reuse") S8 **Upcycling of products**: Creative and sustainable use of old and used materials, components, and products at the end of their useful life to create new products of higher value or better quality ("Recycle") S9 **Recycling**: Parts or materials are recovered from the product for reuse ("recycle"). S10 **Dematerialization**: Physical materials, components, and products are replaced by non-physical (primarily digital) products or services

Joint value creation W1 Make the entire value creation process more efficient in line with sustainability goals W2 Make **logistics** more sustainable, e.g., fewer emissions, fewer kilometers, etc. (e.g., from global to local sourcing) W3 Change supply chains, e.g., vertical integration*, to achieve greater transparency W4 Supplier qualification: Implement qualification measures for sustainability W5 Intensify supplier relationships: Get to know suppliers better and build relationships that are more focused on sustainability W6 Performance-based contracting: Programs that offer suppliers incentives to develop more sustainable concepts W7 **Lobbying**: Introduction and enforcement of new political measures to promote sustainable behavior W8 New procurement markets: Moving away from geographical sustainability hotspots W9 Cooperative partnerships for sustainability with suppliers W10 Focus on certifications and sustainability standards in purchasing * Vertical integration refers to a form of corporate concentration in which the vertical range of manufacture is increased by merging several companies with successive stages of processing or trade. Vertical integration is therefore also referred to as vertical corporate concentration.

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

DUALIS - Category group — Category optimization levers for sustainability

M3 - Sprint 2/2

Additional specialized material-sustainability databases (1/4)

No.	Improvement of specifications 1/2	Description
S1	Changing specifications to promote sustainability	 Changing specifications to promote sustainability means reviewing and adjusting product or material requirements to reduce environmental and social impact. For example, it can include switching to recycled materials, reducing packaging, using energy-efficient components, or designing products for longer life and easier recycling. This lever helps companies make their procurement and production more sustainable without compromising functionality or quality.
S2	Changing product design (e.g. through modularity, reparability, lightweight construction) for greater sustainability	 Changing product design for greater sustainability means improving how a product is built to reduce its environmental impact over its entire life cycle. This can include using modular designs for easy repair or upgrade, lightweight construction to save materials and energy, and designing for durability or recyclability. The goal is to make products that use fewer resources, last longer, and create less waste.
S3	Sustainability innovations : Actively pursuing sustainability innovations among our suppliers	 Innovations: Actively pursuing sustainability innovations among our suppliers means working closely with suppliers to develop new, more sustainable materials, technologies, and processes. This can include co-creating low-carbon solutions, improving resource efficiency, or introducing circular products. The goal is to drive continuous improvement and make sustainability a shared source of innovation and competitive advantage across the supply chain.
S4	Demand management : Reduction of demand ("reduce"), Reduction of total material quantity	 Demand management: Reduction of demand ("reduce") means lowering the total amount of materials or products used — especially in categories with high environmental or social risks. This can be achieved by using products more efficiently, extending their lifespan, or avoiding unnecessary consumption. The goal is to reduce the overall material flow in the value chain and minimize negative sustainability impacts.
S5	Reducing resource use: The proportion of primary raw materials will be reduced through "secondary material" (recycled and renewable)	 Reducing resource use means lowering the amount of primary (new) raw materials needed by using recycled or renewable materials instead. This approach helps to save natural resources, decrease waste, and cut carbon emissions — supporting a more circular and sustainable material cycle.

DUALIS - Category group — Category optimization levers for sustainability

M3 - Sprint 2/2

Additional specialized material-sustainability databases (2/4)

No.	Improvement of specifications 2/2	Description
S6	Extending service life: Extending the service life of materials, components, and products ("Reuse")	 Extending service life means keeping materials, components, and products in use for as long as possible through regular maintenance, repair, refurbishment, or reconditioning. This reduces waste, conserves resources, and lowers environmental impact by avoiding the need for new production ("Reuse").
S7	Intensify use: Get more output from the same amount of materials through reuse, redistribution, and sale of materials, components, and products ("Reuse")	 Intensify use means maximizing the value and usage of materials, components, and products by reusing, redistributing, or reselling them. This approach ensures that existing resources deliver more output over their lifetime, reducing waste and the need for new raw materials ("Reuse").
S8	Upcycling of products: Creative and sustainable use of old and used materials, components, and products at the end of their useful life ("Recycle")	 Upcycling of products means transforming old or used materials, components, and products into new items of higher value or improved quality. This creative process extends product life, reduces waste, and supports sustainability by turning what would be discarded into something useful and valuable ("Recycle").
S9	Recycling : Parts or materials are recovered from the product for reuse ("Recycle").	 Recycling means recovering valuable parts or materials from used products and processing them for reuse. This reduces waste, saves natural resources, and helps close the material loop by turning discarded items into new raw materials ("Recycle").
S10	Dematerialization : Physical materials, components, and products are replaced by non-physical (primarily digital) products or services	 Dematerialization means replacing physical materials, components, and products with digital or non-physical alternatives. This reduces resource use, waste, and emissions by shifting from material-intensive production to digital solutions or services.

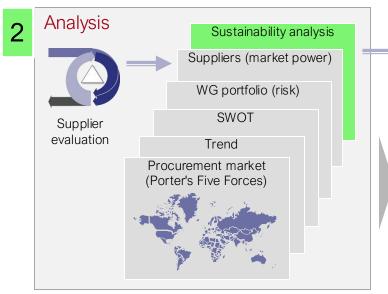
M3 - Sprint 2/2

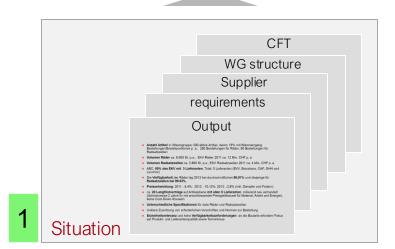
DUALIS - Category group – Category optimization levers for sustainability

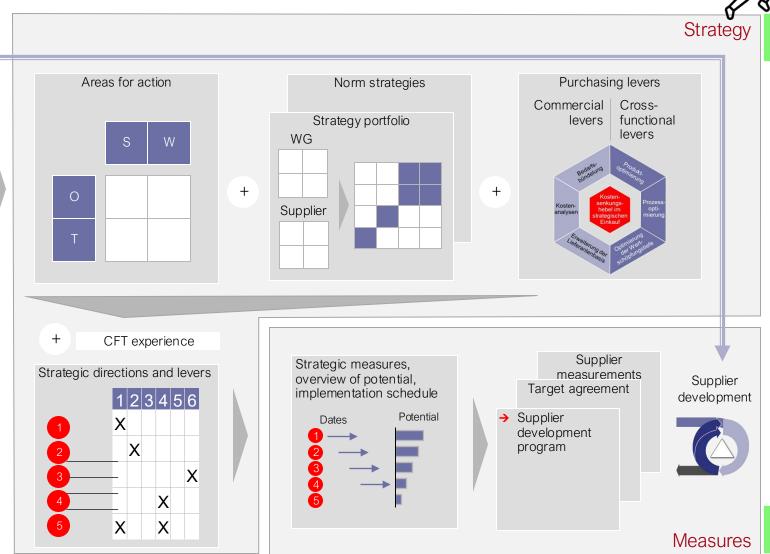
Additional specialized material-sustainability databases (3/4)

No.	Joint value creation 1/2	Description
W1	Make the entire value creation process more efficient in line with sustainability goals	 Making the entire value creation process more efficient means optimizing all stages of production, logistics, and sourcing to reduce waste, energy use, and emissions. The goal is to create more value with fewer resources while aligning business operations with sustainability objectives.
W2	Make logistics more sustainable, e.g., fewer emissions, fewer kilometers, etc. (e.g., from global to local sourcing)	 Making logistics more sustainable means reducing the environmental impact of transportation and supply chains. This can include cutting emissions, shortening transport distances, and shifting from global to local sourcing to lower the carbon footprint and improve efficiency.
W3	Change supply chains, e.g., vertical integration*, to achieve greater transparency	 Changing supply chains means restructuring sourcing and production networks — for example, through vertical integration — to improve transparency, traceability, and control over environmental and social impacts throughout the value chain. This can include shortening supply chains, working with certified suppliers, implementing digital traceability systems, and improving collaboration across all tiers.
W4	Supplier qualification: Implement qualification measures for sustainability	 Supplier qualification means developing and implementing training, assessment, and improvement programs to ensure that suppliers meet defined sustainability standards in areas such as environment, labor, and ethics. This can include supplier audits, sustainability certifications, on-site training, and continuous performance monitoring.
W5	Intensify supplier relationships: Get to know suppliers better and build relationships focused on sustainability	 Intensifying supplier relationships means building closer, long-term partnerships with suppliers to improve collaboration, transparency, and shared commitment to sustainability goals. This can include regular audits, joint innovation projects, sustainability workshops, and open data sharing to drive continuous improvement.

DUALIS - Category group — Category optimization levers for sustainability


M3 - Sprint 2/2


Additional specialized material-sustainability databases (4/4)

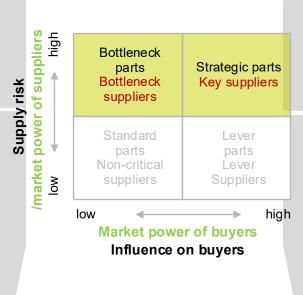

No.	Joint value creation 2/2	Description
W6	Performance-based contracting: Programs that offer suppliers incentives to develop more sustainable concepts	 Performance-based contracting means creating agreements where suppliers are rewarded based on achieving specific sustainability outcomes rather than just delivering products or services. This can include incentives for reducing emissions, improving energy efficiency, using eco-friendly materials, or meeting circular economy targets.
W7	Lobbying : Introduction and enforcement of new political measures to promote sustainable behavior	 Lobbying means actively engaging with policymakers and industry associations to advocate for regulations and policies that promote sustainable production and consumption. This can include supporting environmental standards, social responsibility laws, or incentives for green innovation.
W8	New procurement markets: Moving away from geographical sustainability hotspots	 New procurement markets means sourcing from regions or suppliers with lower environmental and social risks to reduce exposure to sustainability hotspots. T his can include shifting production to areas with stronger environmental regulations, fair labor practices, or better access to renewable resources.
W9	Cooperative partnerships for sustainability with suppliers	 Cooperative partnerships for sustainability with suppliers means working closely with suppliers to jointly develop and implement sustainable solutions. This can include sharing knowledge, setting common sustainability goals, co-investing in green technologies, or improving social and environmental performance across the supply chain.
W10	Focus on certifications and sustainability standards in purchasing	 Focus on certifications and sustainability standards in purchasing means prioritizing suppliers and products that meet recognized environmental, social, and ethical standards. This can include certifications such as ISO 14001, Fair Trade, FSC, or EcoVadis ratings to ensure responsible sourcing and continuous improvement in sustainability performance.

Roadmap for strategy development and implementation

S: Strengths O: Opportunities T: Threats WG: Product groups CFT: Cross-functional team W: Weaknesses

results SUSTAINABLE PROCUREMENT | 2025 | © IPG All Rights Reserved |42

Source: IPG


20 Category optimization levers for sustainability

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

Improvement of specifications

"Develop advantages"

Suitable for ABC

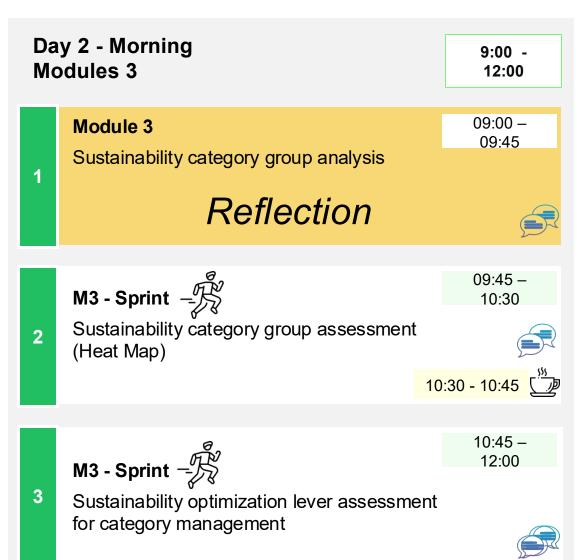
Top 3 levers for ABC

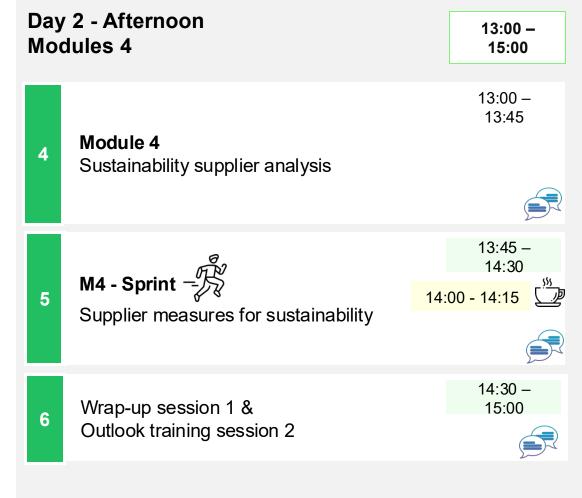
digital) products or services

Good practice example 1 Concrete sleepers

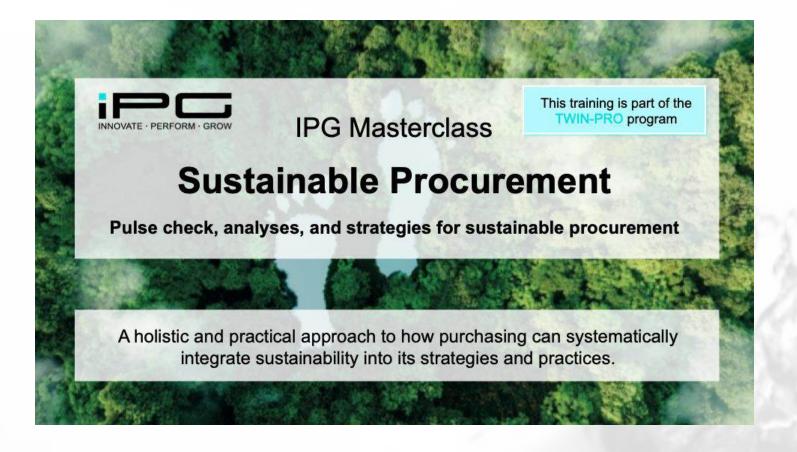
Good practice example 2

Fuels and combustibles





Fit for Sustainable Supply Chain in Europe



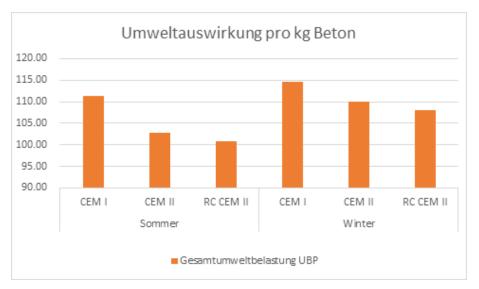
This document is intended exclusively for participants in the IPG Masterclass "Sustainable Procurement."

The content is strictly confidential and remains the intellectual property of IPG PARTNERS GROUP [IPG].

Distribution, citation, and reproduction—
even in part—for the purpose of passing on
to third parties is only permitted with the
prior written consent of IPG.

www.SWISS-IPG.com

Good practice example


Good practice example 1 Concrete sleepers

Sustainability – Concrete sleeper category group – Initial situation and strategic directions

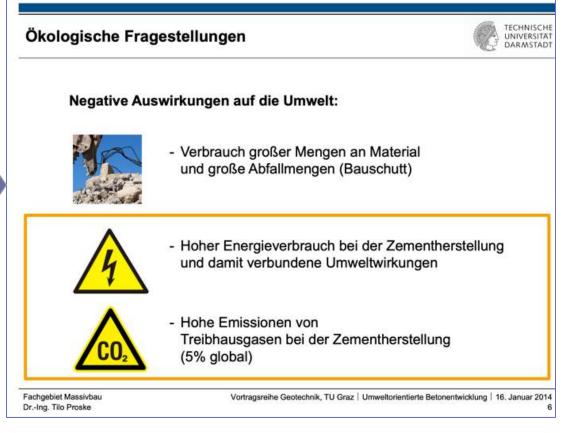
The production of cement gives concrete a bad reputation when it comes to climate change.

Cement is essential for the production of concrete. And we need concrete for most of our buildings. However, the production of just one ton of cement releases 700 kilograms of carbon dioxide. This may be less than the emissions from steel production per ton, but we produce around 53 million cubic meters of concrete per year in Germany alone. Globally, carbon dioxide emissions from cement account for only seven percent, but the trend is rising. For this reason, the United Nations is calling for the development of climatefriendly cement-based materials in its environmental program.

CEM II CEMENT

Initial situation: Identifying a more environmentally friendly concrete sleeper

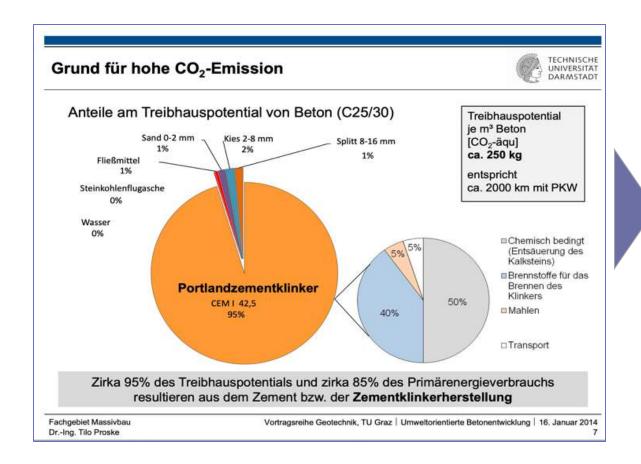
Risk


analysis

Determine risk

category

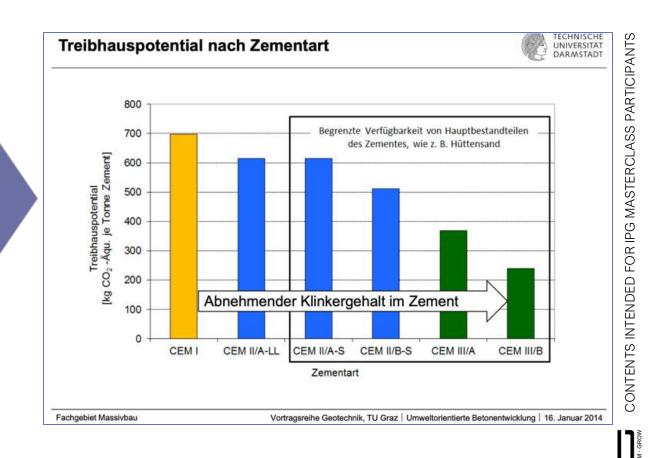
- Life cycle assessment **CEM II/A-LL 52.5N** incl. RC concrete is better than CEM I (Portland)
- Proportion of recycled concrete (up to 40%) has positive effects
 - E2E approach—reuse of old concrete sleepers
 - Proportion of RC concrete varies between 0-40% depending on availability
- The technical requirements are guaranteed
- Risk management K250 residual risk of aging is classified as low
- BLS / SOB are also switching to CEM II
- Goal: complete switch to CEM II from 2021
- After switching to CEM II, launch of a sustainability communication campaign


Determine

category

Risk

analysis


Sustainability – Concrete sleeper category group – Initial situation and strategic directions

Sustainability – Concrete sleeper category group – Initial situation and strategic directions

	Hauptbestandteile											
	Klinker	Hüttensand	Flugasche	Puzzolan	gebr. Schiefer	Kalksteir						
CEMI	95-100	-	12	1527	-	2						
CEM II/A	80-94			6-20								
CEM II/B	65-79			21-35								
CEM II/C	50-64	16-44	7.2	74	-	6-20						
CEM III/A	35-64	36-65		8.50	-	-						
CEM III/B	20-34	66-80	-	(4 <u>P</u> I)	-	ä						
CEM IV/B	45-64	-	36	-55	-	-						
CEM V/A	40-64	18-30	18	-30	-	-						
CEM V/B	20-38	31-50	18	-30	-	-						
CEM VI	35-49	31-59			-	6 - 20						

Dr.-Ing. Tilo Proske

Vortragsreihe Geotechnik, TU Graz | Umweltorientierte Betonentwicklung | 16. Januar 2014

Sustainability – Concrete sleeper category group – Initial situation and strategic directions

Entwicklung von Ökobeton bzw. Ökozement für die Baupraxis

- Mindestens gleichwertige bemessungsrelevante Festbetoneigenschaften
- Ausreichende Verarbeitbarkeitseigenschaften
- Verwendung in ausreichender Menge verfügbarer Ausgangsstoffe
- Nutzung vorhandener Anlagentechnik zur Zement- und Betonherstellung ohne großen Investitionsbedarf
- Kostenneutralität

Fachgebiet Massivbau

Dr.-Ing. Tilo Proske

CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS

Sustainability – category group: concrete sleepers – Summary of sustainability risks/opportunities

⇔ SBB CFF FFS

Overall assessment

- The investment strategy and the life cycle assessment have shown that concrete sleepers are the best type of sleeper in terms of LCC.
- Taking opportunities and risks into account therefore enables an overall improvement in the sustainability of sleepers.

Main risks

- Sand/gravel (origin, scarce resource), check future availability of regional sand and gravel pits.
- Production is very energy-intensive. Review the energy strategy to reduce demand.

Opportunities (including circular economy)

- Proportion of alternative fuels in cement production.
- Ecological concrete mix (CEM II, recycled content). NAT is considering using CEM II and recycled concrete as standard. This would be anchored in the specifications in the future.
- ABC currently pays for the disposal of concrete sleepers. Check whether disposal costs can be avoided in future by reusing old concrete sleepers in new sleepers.
- Use of the full capacity (currently 40% max.) of recycled concrete as a contribution to reducing land use.

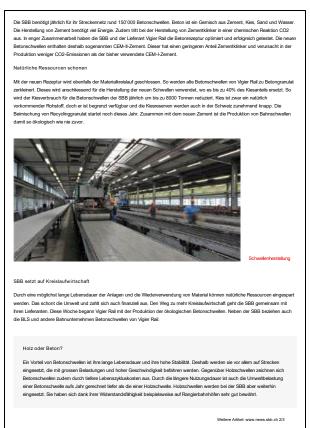
7/10

Determine risk

Risk analysis Prioritiz e risks Derive measure Summary s

Scope 3

ABC is now also focusing on ecology when it comes to railway sleepers


ABC's concrete sleepers are now produced in a more environmentally friendly way. The new formula uses concrete granulate from old sleepers and climate-friendly cement.

This saves ABC up to 8,000 tons of gravel and 570 tons of CO2 every year. That is equivalent to

around 1,500 return flights to London.

ABC needs around 150,000 concrete sleepers for its rail network every year. Concrete is a mixture of cement, gravel, sand, and water. The production of cement requires a lot of energy. In addition, CO2 is released during the production of cement clinker in a chemical reaction. In close cooperation, ABC and its supplier Vigier Rail have optimized the concrete recipe and tested it successfully. The new concrete sleepers therefore contain CEM II cement. This has a lower cement clinker content and causes fewer CO2 emissions during production than the CEM I cement used previously.

10/10

Good practice example

Good Practice Example 2 Burning Fuels and combustibles

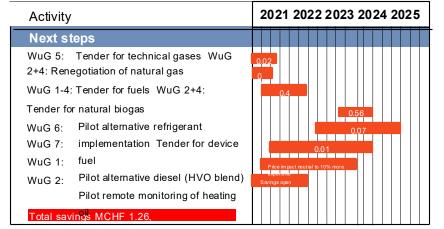
Category group: Burning Fuels and combustibles Category Strategy for Sustainability – – Management summary

Goal and goal achievement

- The target of 5% or ~1.26 MCHF savings on expenditure in 2020 (25.0 MCHF) will be achieved with confirmed measures.
- CO₂ emissions from fossil fuels purchased directly by ABC are to be halved between 2020 and 2027. (2020: 60,750 tons; 2027: 30,476 tons)

Strategy

- Develop new potential suppliers for alternative energies
- Define alternative fuels for diesel B0 by means of a pilot project and qualified development and optional tendering of CO2-neutral or low-carbon alternative products (biogas, biopropane, biogenic heating oil, fuel cards for electric vehicles, etc.), taking into account technology and economic dependencies.
- **Bundling expiring contracts for** fuel cards, pellets, heating oil, diesel, and alternative energies to leverage competitive intensity
- Continuously review purchasing cooperations, e.g., with other public companies, subsidiaries, and partners of Cargo.
- **Build up knowledge and experience** for the procurement (keyword: structured procurement) of natural gas and biopropane until the market opens in 2024.
- Pilot project for passenger transport using climate-friendly refrigerant, propane, starting in 2022/3. Understand the technology, find out whether there are any risks.
- Remote monitoring (telemetry) of heating oil tanks and order triggering at ABC centrally, supplier or, if necessary, automatically. Include new possibilities for "guided buying."
- Track fuel and heating oil purchase quantities and notify various CFTs if CO2 reduction targets are not met.
- Requests for services from suppliers of technical gases, e.g., for welding work.


CO2 reduction, implementation speed

	П	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Total, Tonnen CO2eq/Jahr in Scope 1		65'475	60'750	57'404	54'605	43'988	41'573	37'545	33'764	30'476	22'690	8'107	3'669
NuG 1, Treibstoff für Schienenfahrzeuge	H												
NuG 1. Diesel Traktion Mio. L/Jahr	ш	10.97	10.32	10.30	10.09	7.09	7.09	6.50	6.00	5.50	5.00	1.00	0.50
intspr. Tonnen CO 2eg/Jahr in Scope 1	П	29'993	28231	28'164	27'590	19'387	19'387	17'773	16'406	15'039	13'672	2'734	1'367
Massnahme Reduktion				HVO Blend Pilot Tessin	HVO Blend Tessin	HVO Blend ganze CH	HVO Blend ganze CH	HVO Blend garge CH	HVO Blend ganze CH	HVO Bland ganze CH	HVO Blend garze CH	HVO 100% ganze CH	HVO 100% ganze CH
massinative reduced:						Effokt Elektri- fzierung	Effekt Elektri- fizierung	Effekt Elektri- fizierung	Effold Eloktri- fizierung	EffektElekti- fizierung	Effekt Elektri- fizierung	Effekt Elektri- fizierung	EffektElekti- fizierung
	Щ												
NuG 2, Brennstoffe für Gebäude	Ш												
NuG 2, Heizöl Gebäude Mio.L/Jahr	Ш	5.51	5.31	5.00	4.60	4.20	3.80	3.40	3.00	2.70	1.40	0.70	0.20
intspr. Tonnen CO 2eq/Jahr in Scope 1	Ш	14'969	14425	13'593	12'508	11'418	10'331	9'243	8156	7'340	3'806	1'903	544
/uG 2, Erdgas Gebäude GWh/Jahr (*90% v. Gesamtb	eda	45.81	39.66	37.00	34.00	31.00	28.00	25.00	22.00	20.00	10.00	5.00	-
ntspr. Tonnen CO2eq/Jahr in Scope 1	ш	9'268	8024	7'488	6'879	6°272	5'665	5'058	4'451	4'047	2'023	1'012	-
Massnahme Reiduktion, "ca. 10% Erdigas stehe Anlagen				Poliets, Femhelzung	Poliets, Fembelzung	Polets, Ferrheizung	Pellets, Femhelzung	Poliets, Fembelzung	Polets, Ferrheizung	Pellets, Femhelzung	Pellets, Femhelzung blogene Helzőle	Pellets, Fernheizung blogene HeizSte	Pellets, Femhelzung biogene Heizbie
NuG 3, Treibstoff für Strassenfahrzeuge	Н												
NuG 3, Diesel, *Benzin Strassenfgz, Mio.L/Jahr	Ш	3.18	2.97	2.35	221	2.00	1.80	1.59	1.38	1.17	0.97	0.76	0.55
ntspr. Tonnen CO2eg/Jahr in Scope 1	ш	8'732	8137	6'444	6'065	5'498	4'928	4'359	3'790	3"222	2'653	2'085	1'516
Massnahme Reduktion, "Arteil Bergin z.Z. 3% sinkend in Diesel eingerechnet				Wechsel auf Elektro Biogas	Wechsel auf Elektro Biogais	Wechsel auf Elektro Biogas	Wechsel auf Elektro Biogas	Wechsel auf Elekto Biogas	Wedhsel auf Elektro Biogas	Wechsel auf Elektro Biogas	Wechsel auf Elektro Biogas	Wednsel auf Elektro Biogas	Wechsel auf Elektro Biogas
VuG 4, Brennstoffe Anlagen (Weichenheiz)	Н												
VuG 4, Erdgas GWh/Jahr.(*10% v. Gesam thedarf)	Ш	5.09	4.41	3.70	3.40	3.10	2.80	2.50	2.20	2.00	1.00	0.50	-
ntspr. Tonnen CO2eg/Jahr in Scope 1	Ш	1'030	892	749	688	627	587	508	445	405	202	101	-
/uG 4, PropangasTonnen/Jahr	П	490.00	344.00	320.00	290.00	260.00	230.00	200.00	170.00	140.00	110.00	90.00	80.00
ntspr. Tonnen CO2eq/Jahr in Scope 1	П	1'484	1042	969	878	787	697	606	515	424	333	273	24
Massnahme Reduktion, "ca. 90% Endgas siehe Gebäude				Wechsel auf Elektro Biogas	Wechsel auf Elektro Blogas	Wechsel auf Elektro	Wechsel auf Elektro Blooss	Wechsel auf Elektro Biogas	Wednsel auf Elektro	Wechsel auf Elektro	Wechsel auf Elektro Bloggs	Wednsel auf Elektro Blooss	Wechsel auf Elektro Biogas

analysis

e risks

Roadmap zur Implementation

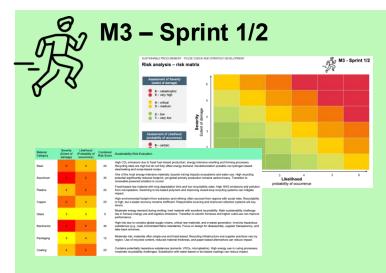
Sustainability – category group: fuels and combustibles Measures, CO2 reduction, quantification

From 2027 onwards, CO₂ emissions from fossil fuels purchased are to be halved compared to 2020.

		2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Total, tons of CO2eq/year in Scope 1		65,475	60,750	57,404	54,605	43,988	41,573	37,545	33,764	30,476	22,690	8,107	3,669
Wood A final for mail on higher													
WuG 1, fuel for rail vehicles													
WuG 1, diesel traction million liters/year		10.9	10.32	10.30	10.09					5.50			
Equivalent tons of CO2eq/year in Scope 1		29,993	28,231	28,164	27,590	19,387	7 19,387	17,773	16,406	15,039	13,672	2,734	1,367
Reduction measure				HVO Blend Pilot Ticino	HVO Blend Ticino	HVO Blend whole of Switzerland	HVO Blend entire Switzerland	HVO Blend whole CH	HVO Blend entire Switzerland	HVO Blend entire CH	HVO Blend entire Switzerland	HVO 100% Whole of Switzerland	HVO 100% Whole of Switzerland
						Effect of electrification	Effect of electrification	Effect of electrification	Effect of electrification	Effect Electrification	Effect Electrification	Effect Electrification	Effect of electrification
WuG 2, fuels for buildings													
WuG 2, heating oil for buildings million liters/year		5.51	5.31	5.00	4.60	4.20	3.80	3.40	3.00	2.70	1.40	0.70	0.20
Equivalent tons of CO2eq/year in Scope 1		14,969	14,425	13,593	12,506	11,418	3 10,33°	9,243	8,156	7,340	3,806	1,903	544
WuG 2, natural gas buildings GWh/year (*90% of total consumption)	da	45.81	39.66	37.00	34.0	31.00	28.00	25.00	22.00	20	10.00	5.00	-
Equivalent tons of CO2eq/year in Scope 1		9,268	8,024	7,486	6,879	6,272	5,665	5,058	4,451	4,047	2,023	1,012	C
Reduction measure. *Approx. 10% natural gas, see annexes				Pellets, district heating	Pellets, district heating	Pellets, district heating	Pellets, district heating	Pellets, district heating	Pellets, district heating	district	Pellets, district heating Biogenic heating oils	Pellets, district heating Biogenic heating oils	Pellets, district heating Biogenic heating oils
WuG 3, fuel for road vehicles													
WuG 3, diesel, *gasoline Road vehicles. Million liters/year		3.18	2.97	2.35	2.21	2.0				1.17	0.97		0.55
Equivalent tons of CO2eq/year in Scope 1		8,732	8,137	6,444	6,065	5,496	4,928	4,359	3,790	3,222	2,653	2,085	1,516
Reduction measure. *Proportion of gasoline currently 3%, falling, included in diesel.				Switch to electric Biogas	Switch to electric Biogas	Switch to electric Biogas	Switch to electric Biogas	Switch to electric Biogas	Switch to electric Biogas	ele ctric	Switch to electric Biogas	Switch to electric Biogas	Switch to electric Biogas
				3	9	3	3	J	3	3	3	3	3
WuG 4, fuel systems (point heating)													
WuG 4, natural gas GWh/year, (*10% of total demand)		5.09	4.41	3.7	3.4	3.1	2.80	2.50	2.20	2.00	1.00	0.50	-
Equivalent tons of CO2eq/year in Scope 1		1,030	892	749	688	627	7 567	506	445	405	202	101	(
WuG 4, propane gas tons/year		490	344	320	290	260	230.00	200.00	170.00	140.00	110.00	90.00	80
Equivalent tons of CO2eg/year in Scope 1		1,484	1,042	969	878	787	7 697	606	515	424	333	273	24:
Measure: Reduction. *Approx. 90% natural gas, see Building				Switch to electricity Biogas	Switch to electricity Biogas	Switch to electricity	Switch to electricity Biogas	Switch to electricity	Switch to electric Biogas	Switch to electric Biogas	Switch to electric	Switch to electric	Switch to electric

This document is intended exclusively for participants in the IPG Masterclass "Sustainable Procurement."

The content is strictly confidential and remains the intellectual property of IPG PARTNERS GROUP [IPG].

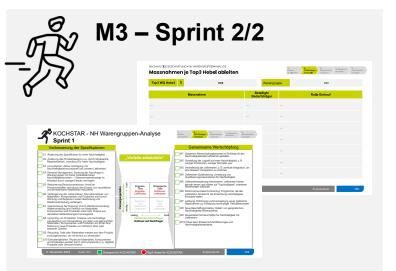

Distribution, citation, and reproduction even in part—for the purpose of disclosure to third parties is only permitted with the prior written consent of IPG.

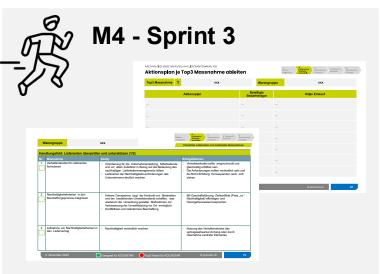
www.SWISS-IPG.com

SUS Category Group analysis & SUS supplier analysis Sprints

Material criticality assessment

- Which materials contribute most to CO₂ emissions, energy consumption, resource scarcity and all relevant sustainability focus areas defined (1-9)
- 2. Plot material groups into the Material Risk Matrix
- 3. Derive appropriate mitigation measures for each material group





Category optimization levers for sustainability

- 1. Which category group levers for sustainability do you consider most suitable for your category group?
- 2. Which top three levers would you prioritize?
- 3. What other stakeholders do you need to implement the top three levers?
- 4. What specific measures would you pursue for the top three levers?
- 5. What role does purchasing play in each case?

Supplier measures for sustainability

- 1. Which supplier measures for sustainability do you consider most suitable for your category group?
- 2. Which top 3 measures would you prioritize?
- 3. What other resources do you need to implement the top three measures?
- 4. What specific action plan do you intend to pursue for each of the top three measures?
- 5. What role does purchasing play in each case?

DUALIS - Category group - material criticality assessment

Category group – material criticality assessment

To create a Material Heat Map for your product category based on the Bill of Materials (BOM) and known specifications per procurement item, you first need to answer the following key question:

This central question can be broken down into sub-questions such as:

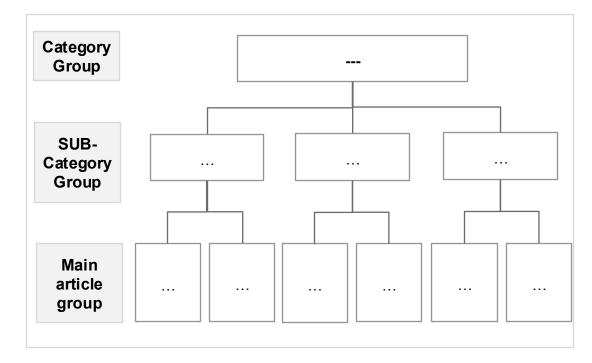
- 1. Which materials contribute most to CO₂ emissions, energy consumption, resource scarcity and all relevant sustainability focus areas defined (1-9)
- 2. Plot material groups into the Material Risk Matrix
- 3. Derive appropriate mitigation measures for each material group

Answering these will allow you to visualize — through the Heat Map and Risk Matrix — in which **material** sustainability priorities you should focus.

DUALIS - Category group – material criticality assessment

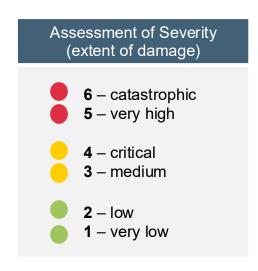
M3 - Sprint 1/2

Category Group (Material group)


- A commodity group (or material group) in procurement is a category of goods or services that share similar characteristics, functions, or sourcing strategies.
- It helps companies organize and manage their purchases by grouping items with comparable suppliers, markets, or cost structures — for example, "metals," "electronics," or "packaging materials."

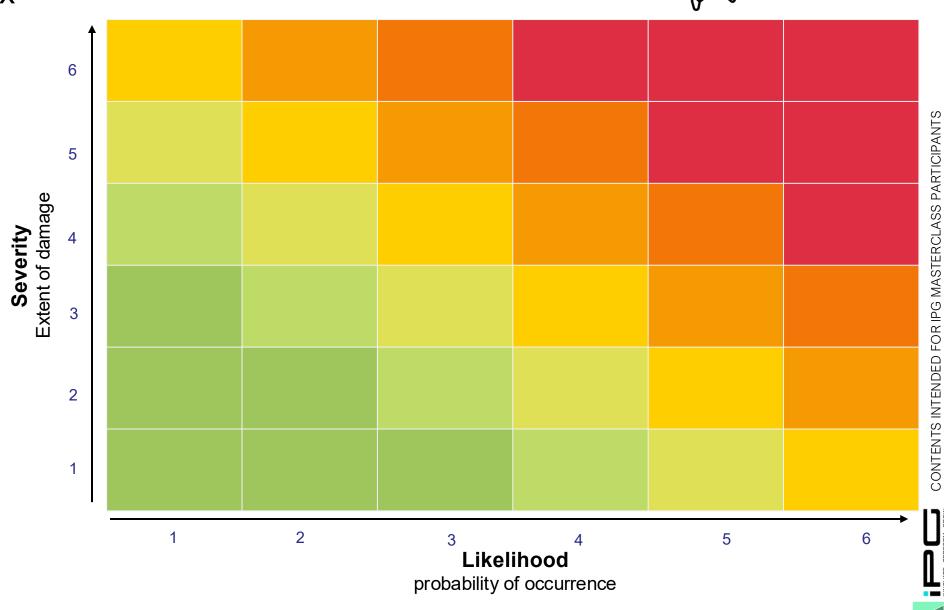
Bill of Material

- A Bill of Materials (BOM) is a comprehensive list of all materials, components, and parts required to manufacture a product, including quantities and specifications for each item.
- It serves as the recipe or blueprint for production, showing how individual components fit together into the final product.
- A BOM helps ensure accurate procurement, planning, cost estimation, and inventory management throughout the manufacturing process.


Category Group Tree

DUALIS - Category group – material criticality assessment Material Risk Matrix

M3 - Sprint 1/2


6 – certain 5 – probable

4 – occasional

3 – conceivable

2 – unlikely

1 - inconceivable

INHALTE BESTIMMT FÜR PROCURE.CH LEHRGANGSTEILNEHMER

DUALIS - Category group – material criticality assessment Recommended mitigation measures

M3 - Sprint 1/2

Material Category	Mitigation Measures

Case Study – BiH Company MATERIAL MIX - Cockware & Frying Pan

Material Category	Severity (Extent of damage)	Likelihood (Probability of occurrence)	Combined Risk Score	Sustainability Risk Evaluation
Steel (Stainless)	3	5	12	Moderate risk. Stainless steel production requires significant energy but has long product lifespan and high recyclability. Local sourcing in BiH reduces logistics emissions. Decarbonization potential through renewable energy use in steelmaking.
Aluminium	3	5	15	High energy use during smelting; moderate local recycling. Reduced footprint possible by using secondary aluminium and renewable-powered foundries. Transportation emissions lower due to regional sourcing.
Plastic Handles	4	4	16	Fossil-based and limited recycling in local context. Potential microplastic release during use or disposal. Substitution with bio-based or recycled polymers possible.
Non-stick Coating	4	5	16	Contains PFAS or other chemicals of concern; high curing energy demand. Alternatives (e.g., ceramic coatings) reduce toxicity and GHG emissions. Compliance with REACH/SVHC crucial.
Glass Lids	3	3	9	Moderate energy use in melting; good recyclability. Local production minimizes logistics footprint. Increasing cullet content reduces energy and emissions.
Packaging Materials	3	4	12	Single-use materials, often fossil-based. Moderate recyclability depending on regional waste systems. Sustainable options: FSC-certified paper, recycled film, or compostable packaging.
Accessories	3	3	9	Small impact individually but numerous across production. Potential social risks if imported. Regional sourcing and recycled metal content lower footprint.

Case Study – BiH Company MATERIAL MIX - Cockware & Frying Pan

Recommended mitigation measures

Material Category	Mitigation Measures
Steel (Stainless)	Source low-carbon or recycled stainless steel; optimize forming processes for energy efficiency; engage suppliers in emission tracking.
Aluminium	Increase use of recycled aluminium; ensure renewable power in smelting; apply design-for-recycling to reduce scrap waste.
Plastic Handles	Transition to bio-based or recycled plastics; avoid additives that hinder recyclability; collaborate with local recyclers.
Non-stick Coating	Phase out PFAS; switch to ceramic or water-based coatings; monitor compliance with EU chemical safety standards.
Glass Lids	Increase recycled glass (cullet) share; work with suppliers using electric furnaces; reuse or collect broken lids for recycling.
Packaging Materials	Shift to recyclable paper and film; reduce packaging volume; source from FSC-certified or regional producers.
Accessories	Use recycled metal content; consolidate suppliers regionally; monitor compliance with fair labor and environmental standards.

Case Study – BiH Company MATERIAL MIX – Refrigerator & Freezer

Material Category	Severity (Extent of damage)	Likelihood (Probability of occurrence)	Combined Risk Score	Sustainability Risk Evaluation
Steel	4	5	20	High CO ₂ emissions due to fossil fuel–based production; energy-intensive smelting and forming processes. Recycling rates are high but do not fully offset energy demand. Decarbonization possible via hydrogen-based steelmaking and scrap-based routes.
Aluminium	5	6	30	One of the most energy-intensive materials; bauxite mining impacts ecosystems and water use. High recycling potential significantly reduces footprint, yet global primary production remains carbon-heavy. Transition to renewable-powered smelters is crucial.
Plastics	5	4	20	Fossil-based raw material with long degradation time and low recyclability rates. High GHG emissions and pollution from microplastics. Switching to bio-based polymers and improving closed-loop recycling systems can mitigate impact.
Copper	4	5	20	High environmental footprint from extraction and refining; often sourced from regions with social risks. Recyclability is high, but e-waste recovery remains inefficient. Responsible sourcing and improved collection systems are key levers.
Glass	3	3	9	Moderate energy demand during melting; inert material with excellent recyclability. Main sustainability challenge lies in furnace energy use and logistics emissions. Transition to electric furnaces and higher cullet use can improve performance.
Electronics	5	6	30	High risk due to complex global supply chains, critical raw materials, and e-waste generation. Involves hazardous substances (e.g., lead, brominated flame retardants). Focus on design for disassembly, supplier transparency, and take-back schemes.
Packaging	4	3	12	Moderate risk; materials often single-use and fossil-based. Recycling infrastructure and supplier practices vary by region. Use of recycled content, reduced material thickness, and paper-based alternatives can reduce impact.
Coating	4	4	20	Contains potentially hazardous substances (solvents, VOCs, microplastics). High energy use in curing processes; moderate recyclability challenges. Substitution with water-based or bio-based coatings can reduce impact.

Case Study – BiH Company MATERIAL MIX – Refrigerator & Freezer

Recommended mitigation measures (1/2)

1. Steel

Key Risks: High GHG emissions, fossil energy dependency. **Mitigation Measures:**

- Source steel from suppliers using electric arc furnaces (EAF) powered by renewable energy.
- Prioritize certified low-carbon or recycled steel (e.g., ResponsibleSteel).
- Engage suppliers in Scope 3 emission reporting and reduction programs.

3. Plastics

Key Risks: Fossil-based feedstocks, pollution, poor recyclability. **Mitigation Measures:**

- Transition to bio-based or recycled plastics (rPP, rPET).
- Limit plastic use through **design-for-recycling** principles.
- Partner with suppliers committed to closed-loop systems and plastic neutrality initiatives.

2. Aluminium

Key Risks: Very high energy consumption, mining-related biodiversity loss.

Mitigation Measures:

- Prefer secondary (recycled) aluminium with documented traceability.
- Work with smelters powered by renewable energy.
- Require supplier adherence to **Aluminium Stewardship** Initiative (ASI) standards.

4. Copper

Key Risks: Energy-intensive refining, mining pollution, social risks in sourcing.

Mitigation Measures:

- Prioritize recycled copper or certified responsibly mined sources (e.g., Copper Mark).
- Implement traceability for upstream suppliers.
- Audit suppliers for labor, safety, and environmental compliance.

Case Study – BiH Company MATERIAL MIX – Refrigerator & Freezer

Recommended mitigation measures (2/2)

5. Glass

Key Risks: High furnace energy demand, transport emissions. **Mitigation Measures:**

- Increase cullet content (recycled glass share).
- Collaborate with suppliers using electric or hybrid furnaces.
- Optimize packaging and transport routes to reduce CO₂ footprint.

7. Packaging

Key Risks: Resource inefficiency, waste generation.

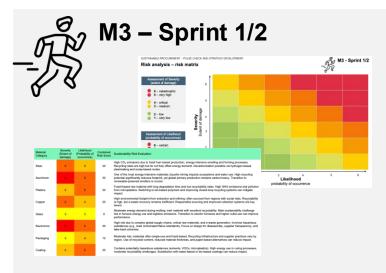
Mitigation Measures:

- Switch to recyclable, biodegradable, or paper-based materials.
- Standardize minimalist packaging design across product lines.
- Source from FSC- or PEFC-certified packaging suppliers.

6. Electronics

Key Risks: Hazardous substances, rare earth extraction, e-waste. **Mitigation Measures:**

- Implement supplier REACH and RoHS compliance audits.
- Partner in take-back or recycling schemes for electronic waste.
- Encourage eco-design for disassembly and repairability.


8. Coating

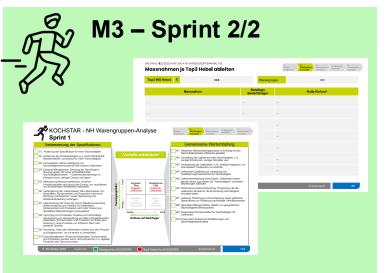
Key Risks: VOC emissions, hazardous solvents, energy use. **Mitigation Measures:**

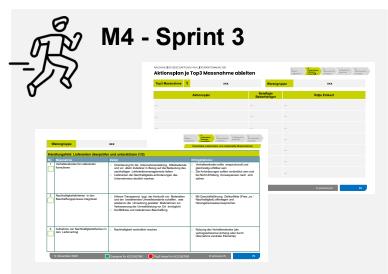
- Substitute with low-VOC, water-based, or powder coatings.
- Optimize curing temperature and process efficiency.
- Require supplier compliance with REACH/SVHC regulations.

SUS Category Group analysis & SUS supplier analysis **Sprints**

Material criticality assessment

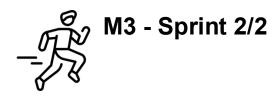
- 1. Which materials contribute most to CO₂ emissions, energy consumption, resource scarcity and all relevant sustainability focus areas defined (1-9)
- 2. Plot material groups into the Material Risk Matrix
- 3. Derive appropriate mitigation measures for each material group





Category optimization levers for sustainability

- 1. Which category group levers for sustainability do you consider most suitable for your category group?
- 2. Which top three levers would you prioritize?
- 3. What other stakeholders do you need to implement the top three levers?
- 4. What specific measures would you pursue for the top three levers?
- 5. What role does purchasing play in each case?

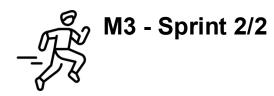


Supplier measures for sustainability

- 1. Which supplier measures for sustainability do you consider most suitable for your category group?
- 2. Which top 3 measures would you prioritize?
- 3. What other resources do you need to implement the top three measures?
- 4. What specific action plan do you intend to pursue for each of the top three measures?
- 5. What role does purchasing play in each case?

Top 3 levers for sustainability

Top 3 category group levers


XXX

Category group

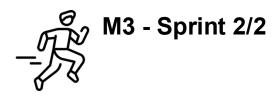
XXX

Measure Measure	Stakeholders involved	Role of purchasing	NTS
			CONTENTS INTENDED FOR IPG MASTERCLASS PARTICIPANTS
			ERCLASS
			IPG MAST
			NDED FOR
			ENTS INTE
			The state of the s

Top 3 levers for sustainability

Top 3 category group levers

2

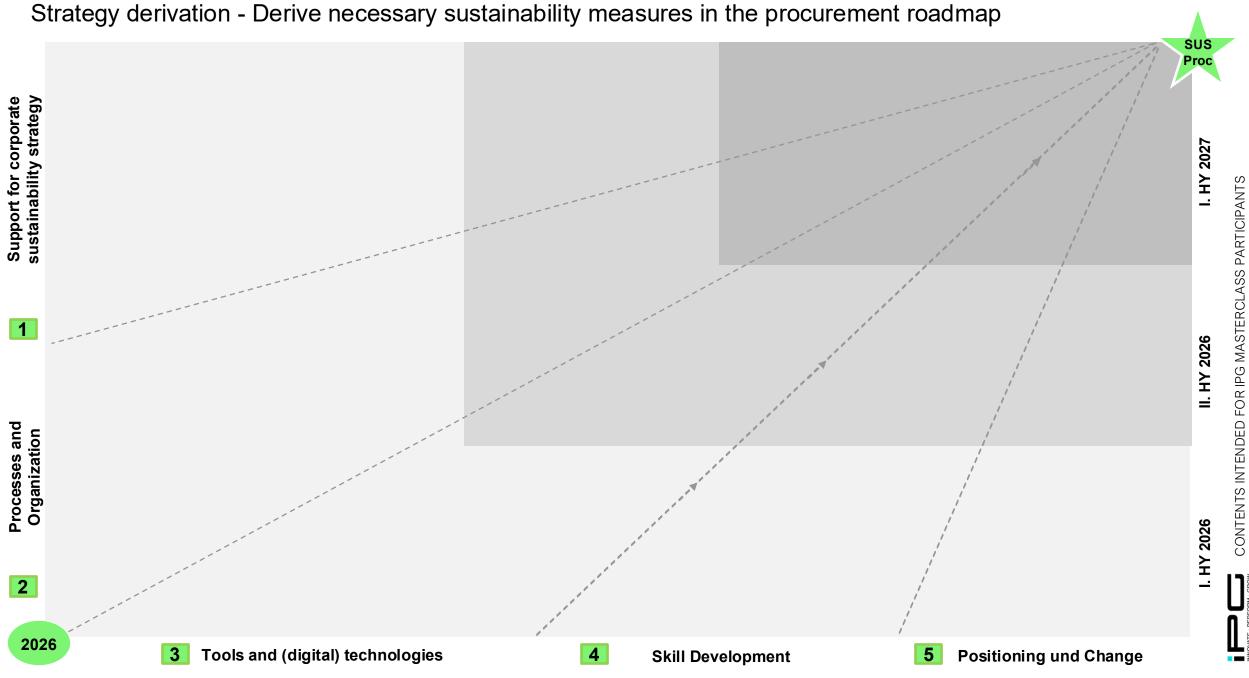

XXX

Category group

XXX

Measure	Users involved	Role of purchasing	
•••			

Top 3 levers for sustainability


Top 3 category group levers

XXX

Category group

XXX

Measure	Users involved	Role of purchasing	

Case Study – BiH Company (S)

No.	Component	Description / Material	Function / Notes
1	Pot Body	Stainless steel (AISI 304 / 18-10), aluminum core, or multi-layer base	Main vessel for cooking
2	Base Disc (Thermal Base)	Aluminum or copper encapsulated in stainless steel	Ensures even heat distribution
3	Lid (Top Cover)	Tempered glass or stainless steel	Retains heat and moisture
4	Lid Handle / Knob	Bakelite, silicone, or stainless steel	Heat-resistant grip for safe handling
5	Side Handles (2x)	Stainless steel, Bakelite, or silicone-coated	Attached to pot body for lifting
6	Rivets / Screws	Stainless steel	Fixation of handles
7	Sealing Ring (optional)	Silicone or rubber	For tightly fitting lids (in pressure pots)
8	Surface Coating (optional)	Non-stick (PTFE, ceramic, or enamel)	For easier cleaning and corrosion resistance
9	Logo / Brand Marking	Laser engraving or print	Branding element
10	Packaging	Carton box with labeling and protective inserts	Retail or transport packaging

Case Study – BiH Company BILL OF MATERIAL (BOM) - Frying Pan

No.	Component	Description / Material	Function / Notes
1	Pan Body	Cast aluminum, forged aluminum, stainless steel, or carbon steel	Main component for frying
2	Base Plate (Induction Base)	Magnetic stainless steel (AISI 430)	Enables induction cooking
3	Inner Coating	Non-stick (PTFE, ceramic, or hard anodized)	Prevents sticking and eases cleaning
4	Outer Coating / Finish	Heat-resistant lacquer or enamel	Protects surface and enhances aesthetics
5	Handle	Bakelite, stainless steel, or wood	Ergonomic, heat-insulated grip
6	Rivet / Screw Fixation	Stainless steel	Joins handle and pan body
7	Lid (optional)	Tempered glass or stainless steel	Included for covered frying pans
8	Protective Cap / Insert	Silicone or plastic	Reinforcement at handle connection
9	Logo / Branding Plate	Laser-marked or embossed	For brand identification
10	Packaging	Carton or sleeve with manual and label	Ready-for-sale packaging

Case Study – BiH Company MATERIAL MIX - Cockware & Frying Pan

No.	Material Group	Examples of Use	Properties / Purpose
1	Metals	Stainless steel, aluminum, copper	Excellent heat conduction, corrosion resistance, long lifespan
2	Non-stick Coatings	PTFE, ceramic, hard anodized coatings	Prevents sticking, improves cooking performance and cleaning
3	Plastics / Polymers	Bakelite, silicone, nylon	Heat-insulated handles and knobs, ergonomic design
4	Glass	Tempered glass lids	Heat resistant, transparent for visibility during cooking
5	Elastomers	Rubber, silicone seals	Used for sealing and insulation (e.g. pressure pots)
6	Fasteners	Stainless steel rivets or screws	Fixation of handles and assembly stability
7	Surface Finishes	Enamel, anodized or polished metal	Aesthetic design, anti-corrosion protection
8	Packaging Materials	Cardboard boxes, inserts, labels	Safe transport, retail presentation, branding

RISK ASSESSMENT – Cockware & Frying Pan – MATERIAL-MIX

Material Category	1. GHGs / Fossil Use	2. Resource Efficiency & Recycling	3. Hazardous Substances	4. Water Consumption / Scarcity	5. Packaging Material	6. Land Use / Biodiversity	7. Energy Consumption & Efficiency	8. Non-GHG Emissions	9. Social Sustainability / Labor	Overall Risk Level
1. Steel & Carbon Steel	Medium – CO ₂ -intensive smelting but regional sourcing	Medium – good recyclability; scrap return needed	Medium –minor alloyingsubstances	Low – limited process water	Low	Low	High – rolling & forming energy intensive		Medium – fair local conditions	High
2. Aluminum & Alloys	Medium – moderate fossil energy share	High – high recycling potential, but needs closed loop	Medium – minor alloy additives	Low	Low	Low	High – casting and forging very energy intensive	Medium – emissions from melting & quenching	Medium – SME labor standards acceptable	High
3. Non-Stick / Enamel Coatings	High – solvent and curing energy use	Medium – limited recycling of coated materials	High – PTFE/ceramic chemicals, possible PFAS residues	Medium – cleaning and bath use	Low	Medium – chemical waste risk	Medium –curing energydemand	High – VOCs and particulates	Medium – moderate EHS oversight	High
4. Plastics & Elastomers (Handles, Knobs)	Medium – petroleum-based	Medium – partial recyclability	Medium – possible additives (BPA, flame retardants)	Low	Medium –moldedpackaginginserts	Medium – indirect impact	Medium – moderate process energy	Medium – VOCs from molding	Medium – fair labor locally	Medium
5. Glass Lids & Inserts	Medium – furnace energy demand	Medium – recyclable but fragile	Low	Medium – water for cooling and cleaning	Low	Low	High – melting temperature >1500 °C	Medium – furnace dust and noise	Low	Medium
6. Fasteners & Auxiliaries (Rivets, Oils, Sealants)	Medium – metal & lubricant inputs	Medium – partial recovery possible	Medium – lubricant chemicals	Low	Low	Low	Medium – machining & forming energy	Medium – vapors, fumes	Medium – workshop labor standards	Medium
7. Packaging Materials (Carton, Film, Ink)	Medium – fossil and paper inputs	Medium – recyclable	Low	Low	High – large packaging volume	Medium – forestry sourcing impact	Medium – paper and ink energy	Medium – VOCs from printing	Medium – fair SME labor	Medium

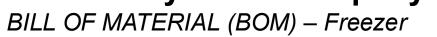
	Sustainability focus	Explanations
1	Greenhouse gases / Use Fossil energy sources	Greenhouse gases are gases that contribute to the greenhouse effect and can be of both natural and anthropogenic (human-induced) origin / Emissions from transport and livestock farming
2	Resource Efficiency & Circular economy	In contrast to the linear "take-make-dispose" model, the circular economy is an economic model that decouples growth from the consumption of finite resources. The goal is to keep products, components, and resources in cycles and to preserve their value for as long as possible. Specifically, the aim is to narrow material (and energy) cycles: • Narrowing - On the one hand, the proportion of primary raw materials is reduced through the use of recycled and renewable materials; on the other hand, the total amount of material in the cycle is reduced through less use. • Slow down - The service life of products and components is extended through maintenance, repair, refurbishment, updates, and upgrades. This preserves value for longer and reduces the need for new materials. • Intensify - More output is obtained from the same quantities of materials through more intensive use of products. • Close - Materials should be reused for a new purpose at the end of their useful life. • Dematerialize - Physical products are replaced by non-physical (primarily digital) products or services.
3	Hazardous substances	Hazardous substances are substances and preparations/mixtures (solid, liquid, or gaseous) that have one or more hazardous propertie and can therefore endanger the life or health of humans and animals, pollute the environment, or damage property.
4	Water consumption & Water scarcity	<u>Water consumption</u> is colloquially defined as the amount of water used for human consumption. This includes water used for direct human consumption as well as water supplied for everyday life, agriculture, commerce, and industry. <u>Water scarcity</u> occurs when there are insufficient water resources to meet existing water demand.

Source: IPG Research

	Sustainability focus	Explanations
5	Packaging material	Packaging generally refers to the covering or (partial or complete) wrapping of an object, in particular for its protection or for better handling.
6	Land use/ Preservation of biodiversity	The term "biodiversity" refers to the total diversity of life. The diversity of the ecosystem (habitats such as water, forest, alpine areas). The diversity of species (animals, plants, fungi, microorganisms). The diversity of genes (within a species and within the entire ecosystem). Land use (also land cover) refers to the way in which humans use soil and land areas (parts of the solid earth's surface).
7	Energy consumption & energy efficiency	The term "biodiversity" refers to the total diversity of life. The diversity of the ecosystem (habitats such as water, forest, alpine areas). The diversity of species (animals, plants, fungi, microorganisms). The diversity of genes (within a species and within the entire ecosystem). Land use (also land cover) refers to the way in which humans use soil and land areas (parts of the solid earth's surface). Energy consumption colloquially refers to the demand for energy for various applications. Energy is necessary to perform work. Depending on the application, a distinction is made between mechanical work, lighting, and heating and cooling processes, which are characterized by time-related measurements and parameters. Energy efficiency is the ratio of service, goods, or energy output to the energy input. Energy efficiency is therefore understood to mean the rational use of energy. Emission of particles, substances, (sound) waves, or radiation into the environment.
8	Emissions (excluding GHG*)	Emission of particles, substances, (sound) waves, or radiation into the environment.
9	Social sustainability / compliance with labor standards and fair business practices	Social sustainability describes the conscious organization of social and cultural systems. Social sustainability should enable a stable society in which all members can participate and which guarantees human dignity, labor rights, and human rights across generations.

Source: IPG Research

Case Study – BiH Company BILL OF MATERIAL (BOM) – Refrigerator



No.	Component	Material / Description	Function / Purpose
1	Cabinet / Outer Shell	Powder-coated steel or painted sheet metal	Structural housing and aesthetic surface
2	Inner Liner	High-impact polystyrene (HIPS) or ABS plastic	Hygienic interior surface
3	Insulation Foam	Polyurethane (PU) foam	Thermal insulation to maintain temperature
4	Compressor Unit	Hermetically sealed compressor with refrigerant (R600a / R134a)	Circulates refrigerant through the cooling circuit
5	Condenser Coil	Copper or aluminum tubing	Releases heat to ambient air
6	Evaporator Coil	Aluminum tubing	Absorbs heat inside the cabinet
7	Thermostat / Temperature Sensor	Electronic or mechanical control	Regulates internal temperature
8 9 10	Door Assembly Shelves and Drawers Lighting Unit	Metal or plastic with magnetic gasket Tempered glass or plastic LED module	Provides tight seal and user access Supports food storage Interior illumination
11	Control Panel / Display	Electronic module with buttons or touch interface	Allows user settings and control
12 13	Door Gasket Feet / Rollers	Flexible rubber seal Plastic or metal supports	Prevents air leakage Stability and mobility
14	Refrigerant Piping	Copper tubes	Connects compressor, condenser, and evaporator
15	Back Cover and Ventilation Grid	Sheet metal or plastic	Protects components and enables airflow
16	Packaging	Cardboard, protective foam inserts	For transportation and retail protection

Case Study – BiH Company

No.	Component	Material / Description	Function / Purpose
1	Cabinet / Outer Shell	Powder-coated steel or painted sheet metal	Structural frame and housing
2	Inner Liner	Aluminum or HIPS plastic	Durable, low-temperature resistant surface
3	Insulation Foam	High-density polyurethane foam	Thermal insulation for sub-zero temperatures
4	Compressor Unit	Heavy-duty hermetic compressor (R600a / R290)	Maintains freezing temperature
5	Condenser Coil	Copper or aluminum tubing	Dissipates heat to the environment
6	Evaporator Coil	Aluminum tubing or plate	Absorbs heat from internal chamber
7	Thermostat / Controller	Electronic or mechanical	Maintains consistent low temperature
8	Lid / Door Assembly	Steel or plastic with magnetic gasket	Ensures airtight closure
9	Storage Baskets	Coated wire or plastic	Organizes frozen goods
10	Lighting Unit	LED or fluorescent light	Provides visibility inside
11	Drain Plug	Plastic with seal ring	For defrost water removal
12	Door Gasket	Flexible rubber or silicone	Prevents air ingress and frost build-up
13	Compressor Base / Feet	Metal frame with rubber mounts	Reduces vibration and noise
14	Refrigerant Lines	Copper tubing	Transfers refrigerant between components
15	Control Panel / Indicator Lights	Simple on/off and temperature indicators	Displays operation status
16	Packaging	Reinforced carton and foam padding	Protection during transport

Case Study – BiH Company MATERIAL MIX – Refrigerator & Freezer

No.	Material Group	Examples of Use	Notes / Characteristics
1	Metals	Steel (outer shell, frame), aluminum (evaporator, condenser), copper (refrigerant piping)	Durable, corrosion-resistant, excellent thermal conductivity
2	Plastics & Polymers	HIPS, ABS (inner liners), silicone or rubber (gaskets), polyurethane (insulation)	Lightweight, insulating, moldable, cost-effective
3	Elastomers	Magnetic door gaskets, seals, vibration dampers	Ensures air-tightness and noise reduction
4	Electronics	Thermostats, control units, LED lighting	Enables temperature regulation and user interface
5	Glass	Tempered shelves and panels	Hygienic and visually appealing interior surfaces
6	Coatings & Paints	Powder coating, enamel, anti-fingerprint finishes	Protection against corrosion, improved aesthetics
7	Packaging Materials	Cardboard, foam inserts, stretch wrap	Protection during transport and handling

RISK ASSESSMENT – Refrigerator & Freezer – MATERIAL-MIX

Material Category	1. GHGs / Fossil Use	2. Resource Efficiency & Recycling	3. Hazardous Substances	4. Water Consumption / Scarcity	5. Packaging Material	6. Land Use / Biodiversity	7. Energy Consumption & Efficiency	8. Non-GHG Emissions	9. Social Sustainability / Labor	Overall Risk Level
1. Steel & Metals	High – high fossil energy in mining & smelting	Medium – recyclable but high losses	Medium – exposure to heavy metals	Medium – water-intensive mining	Low	Medium – mining impacts ecosystems	High – energy-intensive production	Medium – air pollution & particulates	High – mining labor risks (Asia/Africa)	High
2. Plastics & Polymers	High – fossil-based materials	High – poor recyclability & degradation	Medium – additives & microplastics	Low – low direct water use	Low	Medium – feedstock extraction	High – energy demand in polymerization	Medium – volatile compounds	Medium – factory working conditions	High
3. Electronic Components	Medium – depends on mix of metals	Medium –limitedrecycling rates	High – contains lead, bromine, rare earths	Medium – water used in chip production	Low	Medium – mining inputs	High – high power in chipmaking	Medium – process emissions	High – labor, conflict minerals, EHS risks	High
4. Insulation Foams	High – often petrochemical origin	High – difficult to recycle	High – may release HFCs/HCFCs	Low	Low	Low	High – energy-intensive chemicals	High – VOC and particle emissions	Medium – chemical handling risks	High
5. Glass Components	Medium –fossil fuels for melting	Medium – recyclable but energy-heavy	Low	Medium –moderate wateruse	Low	Low	High – furnace operations	Medium –dust and noise	Low	Medium
6. Cables & Wiring	Medium – metal & plastic inputs	Medium –recyclingfeasible butcomplex	Medium – may contain lead or PVC	Low	Low	Low	High – copper & insulation processing	Medium –emissionsduringextrusion	High – supplier labor issues	High
7. Packaging Materials	Medium – fossil-based plastics or paper	Medium –partiallyrecyclable	Low	Low	High – packaging volume & waste	Medium – forestry or extraction	Medium – energy in production	Medium – VOCs, dust	Medium –workingconditions inpackagingsector	Medium

	Sustainability focus	Explanations
1	Greenhouse gases / Use Fossil energy sources	Greenhouse gases are gases that contribute to the greenhouse effect and can be of both natural and anthropogenic (human-induced) origin / Emissions from transport and livestock farming
2	Resource Efficiency & Circular economy	In contrast to the linear "take-make-dispose" model, the circular economy is an economic model that decouples growth from the consumption of finite resources. The goal is to keep products, components, and resources in cycles and to preserve their value for as long as possible. Specifically, the aim is to narrow material (and energy) cycles: • Narrowing - On the one hand, the proportion of primary raw materials is reduced through the use of recycled and renewable materials; on the other hand, the total amount of material in the cycle is reduced through less use. • Slow down - The service life of products and components is extended through maintenance, repair, refurbishment, updates, and upgrades. This preserves value for longer and reduces the need for new materials. • Intensify - More output is obtained from the same quantities of materials through more intensive use of products. • Close - Materials should be reused for a new purpose at the end of their useful life. • Dematerialize - Physical products are replaced by non-physical (primarily digital) products or services.
3	Hazardous substances	Hazardous substances are substances and preparations/mixtures (solid, liquid, or gaseous) that have one or more hazardous propert and can therefore endanger the life or health of humans and animals, pollute the environment, or damage property.
4	Water consumption & Water scarcity	Water consumption is colloquially defined as the amount of water used for human consumption. This includes water used for direct human consumption as well as water supplied for everyday life, agriculture, commerce, and industry. Water scarcity occurs when there are insufficient water resources to meet existing water demand.

	Sustainability focus	Explanations
5	Packaging material	Packaging generally refers to the covering or (partial or complete) wrapping of an object, in particular for its protection or for better handling.
6	Land use/ Preservation of biodiversity	The term "biodiversity" refers to the total diversity of life. The diversity of the ecosystem (habitats such as water, forest, alpine areas). The diversity of species (animals, plants, fungi, microorganisms). The diversity of genes (within a species and within the entire ecosystem). Land use (also land cover) refers to the way in which humans use soil and land areas (parts of the solid earth's surface).
7	Energy consumption & energy efficiency	Energy consumption colloquially refers to the demand for energy for various applications. Energy is necessary to perform work. Depending on the application, a distinction is made between mechanical work, lighting, and heating and cooling processes, which are characterized by time-related measurements and parameters. Energy efficiency is the ratio of service, goods, or energy output to the energy input. Energy efficiency is therefore understood to mean the rational use of energy.
8	Emissions (excluding GHG*)	Emission of particles, substances, (sound) waves, or radiation into the environment.
9	Social sustainability / compliance with labor standards and fair business practices	Social sustainability describes the conscious organization of social and cultural systems. Social sustainability should enable a stable society in which all members can participate and which guarantees human dignity, labor rights, and human rights across generations.

Source: IPG Research